'99 추계학술발표회 논문집 한국원자력학회

액체금속로 KALIMER 증식특성 평형노심의 정상상태 열수력 특성 분석

Steady-State Thermal-Hydraulic Analysis of KALIMER Breeder Equilibrium Core Conceptual Design

김영균, 김원석, 김영일, 김영인 한국원자력연구소 대전광역시 유성구 덕진동 150

요 약

전기출력 150 MWe(열출력 392 MWth)의 U-Pu-Zr 삼원합금 핵연료 사용 소형노심인 액체금속로 KALIMER 중식특성 평형노심에 대하여 정상상태 열수력 설계 특성을 분석하고, 그 결과를 U-Zr 이원합금 핵연료 사용 98.06 설계 노심의 열수력 설계 특성과 비교하였다. 계산 및 비교를 위해서, 냉각재 유량분배 계산을 위한 ORFCE-F/T 모듈, 유량분배에 따른 온도 분포 계산을 위한 SUTHEN 코드가 사용되었는데, SUTHEN 코드는 에너지 모델을 사용하는 정상상태 액체금속로 노심 열수력계산 코드이다. 이들은 모두 현 재 KALIMER 개발의 개념설계 단계에서 사용하고 있는 도구들이다. 두 개의 설계 노심 모두 핵적 특성은 우수하게 나타났으며, 특히 음의 소듐 void 반응도가를 가짐으로써 노심안전성 확보 측면에서 매우 양호함 을 보였으며, 열수력 특성 분석 결과 반경방향 비균질 노심인 중식특성 평형노심이 균질노심인 98.06 설계 노심에 비해 노심 중앙부에서 더 많은 유량이 필요하게 되어 노심에서의 압력손실이 그만큼 중가하는 것 외 에는 큰 차이를 보이지 않았다.

Abstract

A steady-state thermal-hydraulic analysis of 150 MWe rated (392 MWth) KALIMER breeder equilibrium core, defined as a heterogeneous core fueled with U-Pu-Zr ternary alloy fuel, was performed. The results were compared to those of the 98.08 design U-Zr binary fueled core. ORFCE-F/T modules and SLTHEN code were used for the calculations, which are the computation tools used in the conceptual design stage of KALIMER core design development. The comparison of thermal-hydraulic analyses of the two cores shows that the two cores have a similar thermal-hydraulic characteristics, except that the breeder core needs more flow than the 98.08 design core, then gives more pressure loss, in the core center region.

1. 서론

액제금속로 설계개념 연구과제에서 수행한 국내개발 액제금속로 KALUMER (Korea Advanced LIquid MEtal Reactor) 설계개념 타당성 연구 결과[1]에 따라, KALUMER의 노심 규모는 전기출력 150 MWe (열출 력 392 MWth) 로, 시동에 필요한 초기노심 핵연료로는 20%농축도 이하의 U-Zr의 이원함금 핵연료로 설정 되었으며[2], 그 분석작업 결과는 금속연료 노심 설계분석 보고서[3]에 상세하게 기술되어 있다. 금속핵연료 노심이 과도상태시 양호한 음의 반응도 특성을 가지고 있어 고유안전성을 향상시킬 수 있을 뿐만 아니라, 고연소도에 따른 경제성 향상 및 건식재처리를 사용한 핵확산저항성 등의 이점을 가지고 있어, KALUMER의 기본 설계개념으로 선정되었다. 그러나, 과제 수행 중에 중식특성을 고려한 노심을 개발하도록 과제의 목표 가 바뀜에 따라, 초기노심의 핵연료로 U-Pu-Zr 삼원함금 핵연료를 사용하는 비균질 노심으로 구성이 변경되었으며, 현재 이에 따른 연구 작업이 진행되고 있다. 중식특성 노심 개념설계의 세부사항 및 분석작업 결과 는 중식특성노심 설계분석 보고서[4]에 자세히 기술되어 있다.

액체금속로 노심은 일반적으로 삼각형 격자 형태로 장전되어 있는 핵연료봉 다발을 육각형 형태의 덕트로 감싸고 있는 핵연료 집합체로 구성되어 있다. 덕트와 덕트 간에는 서로 유량의 교환이 없는 폐쇄회로를 형 성하고 있어, 이들 각각의 집합체에서 발생되는 열량을 효과적으로 추출하기 위하여 각 집합체에 흐르는 냉 각재 유량을 적절하게 분배하고, 그에 따른 온도분포를 적절하게 유지시키는 것이 열수력 설계의 기본 목표 가 된다. 각 집합체에 필요한 유량은, 정격시 뿐만 아니라 과도상태시에도 핵연료, 피복관 및 구조재의 건 전성 확보, 냉각재 비등방지 조건 등을 고려하여 분배되어야 한다. 전반적인 액체금속로 노심 열수력 개념 설계 및 분석 작업 흐름도를 그림 1에 나타내었다.

개념설계 단계에서의 열수력 특성 분석은 먼저 노심 열수력 설계목표에 따라 노심내 전체유량을 결정한 후, 각 집합계별로 열출력과 그 집합체에서의 핵연료봉 최고 선출력 밀도에 따라 집합체별 필요유량을 계산 하고 이들을 및 개의 유량그룹으로 나누고, 각 집합체의 최고은도 연료봉에 대하여 이 유량에 따른 냉각재 은도, 피복관 중심은도, 핵연료 중심은도 등을 계산하는 방식으로 수행된다. 이 매, 각 집합체에서의 핵연료 피복관 최고 중심은도가 같은 값을 같도록 유량을 재조절하고, 이 유량에 의한 노심내 압력손실값을 고려하 여 유량분배 장치인 오리피스를 결정하게 된다. 이렇게 계산 된 모든 값들이 설계기준을 만족시키는 범위 내에 있도록 하여야 한다. 또한, 냉각재, 피복관 및 핵연료의 최고은도 등이 설계조건을 만족하는지를 확인 하고 이에 따른 집합체별 최소유량을 결정하여 오리피스 장치 설계시 반영하게 된다. 이러한 일련의 해석 절차는 노심 핵설계 및 안전성 분석과 연계되어 반복 수행하며, 최종적으로 핵열수력 안전성 분석을 통하여 검중을 받게 된다.

본 논문에서는 비균질 중식특성 평형노심의 노심 열수력설계 특성을 분석하였으며, 그 결과를 기 수행한 98.03 금속핵연료 설계 노심의 특성 분석 결과와 비교하였다. 이러한 계산을 위하여 사용된 계산도구는, 현 재 KALIMER 노심설계 기술개발의 개념설계 초기 단계에서 사용하고 있는 냉각재 유량분배 계산 모듈 ORFCE-F/T[5]와 그에 따른 노심 집합체내 온도분포 계산 코드 SLTHEN 코드[6] 등이다. SLTHEN 코드는 에너지 방정식을 이용하여 집합체의 온도분포를 계산하는 SUPERENERGY-2 코드를 기초로 하여 작성된 코 드이다.

2. 노심 유량영역 구분 및 온토계산

2.1 노심 유량영역 구분

액체금속로의 집합체는 덕트와 덕트간에 서로 유량의 교환이 없는 폐쇄회로를 형성하고 있기 때문에, 이 들 각각의 집합체에서 발생되는 열량을 효과적으로 추출하기 위해서는 집합체 입구에서 냉각재 유량을 적절 하게 분배해 주어야 한다. 각 집합체에 분배될 유량은 노심 입구 플레넘 부분에서의 노즐과 오리피스 장치 의 조합에 의하여 조절된다. 이러한 장치들은 일단 설계·제작되어 장전되면 운전기간 중에는 유량을 변화 시켜 가면서 조절할 수 없다. 또한, 기계적으로 한계가 있어 미소한 유량을 정말하게 조절할 수가 없다. 마라서, 각 집합체 분배되는 유량은 핵연료가 노내 장전기간 중에 생성하는 발열량의 최대값을 고려한 유량 이 되어야 한다. 유량분배는 경제성과 효율성을 고려하여 각 집합체의 필요 유량을 크기에 따라 및 개의 그룹으로 나누고 그 유량을 각 집합체에 분배하는 방법을 이용하고 있다. 이렇게 분배된 유량에 따라서 노 심내의 온도분포를 계산하게 된다. 한편, 집합체간의 객과 제어봉, 반경방향 차례체 등의 저발열부에서는, 현재의 개념설계 단계에서는 실제적인 계산을 수행하지 않으며, 일반적으로 총유량의 5% 정도를 할당하게 된다[7].

집합체별로 필요한 유량을 분배하고 이들을 및 개의 유량그룹으로 나누기 위해서는 다음과 같은 방법을 이용한다. 핵계산 결과로부터 구한 집합체의 출력 및 집합체별 최대 선출력 밀도에 따라 각 집합체에 필요 유량을 계산하고, 이를 기본으로 하여 약 10% 정도 범위내외의 유량을 갖는 집합체들을 하나의 그룹으로 묶 는다. 그러나, 집합체의 종류가 달라지면 비록 유량이 같다고 할지라도 다른 그룹으로 분리한다. 이 때, 제 어봉과 USS(Ultimate Shutdown System) 에서는 발생하는 출력이 없지만 thermal striping을 고려하여 최소 필요 유량을 공급해 주어야 한다. 반사체, 차폐체, 노내저장 집합체 등의 경우에는 출력이 매우 작아 필요 한 유량도 그만큼 작고 전 주기 동안의 출력변화도 매우 작으므로 유량분배에 커다란 영향을 미치지 않게 되어, 일반적으로 개념설계 초기 단계에서는 이들 집합체에 대한 유량분배 계산을 수행하지 않으며, 이들 집 합체에 대하여는 추후에 상세한 계산작업을 수행할 때 감마가열을 고려하여 유량분들 실시하게 된다. 또한 노심의 집합체와 집합체 사이로 흐르는 바이패스 유량은 보통 전체유량의 1.5%로 가정하고 계산을 수행한다 [7].

그림 2와 표 1에는 중식특성 노심 배치도와 설계사양을, 그림 4와 표 3에는 U금속핵연료 98.08 설계 노심 의 배치도과 설계사양을 각각 나타내었다. 두 노심 모두 392 MWth(150 MWe)로 같은 용량이나, 중식특성 노심은 U-Pu-Zr 삼원합금 핵연료를 사용한 비균질 노심으로서 중식특성을 향상시킨 노심이지만, 98.08 설계 노심에서는 U-Zr 이원합금 핵연료를 사용한 균질노심으로서 중식특성을 고려하지 않은 노심이다.

두 노심 모두, 노심출구의 냉각재 온도는 530 ℃, 노심입구의 냉각재 온도는 3862 ℃로서 노심에서의 온 도 중가가 143.8 ℃이다. 또한, 노심 설계의 최적화 과정에서 핵연료설계 및 노심 핵계산 작업과의 설계연 계 협의에 의해 핵연료봉의 외경을 7.67 mm에서 7.4 mm로 감소시켰으며, 핵연료 노심의 공급핵연료 농 축도도 저농축 핵연료와 고농축 핵연료가 각각 14.4%와 20.0%에서 하나의 농축도를 갖는 핵연료로서 28%로 높게 하였다. 이에 따라 노심 중앙 부분에서의 평균 선출력과 최대 선출력 값이 높아지게 되어, 전체적으로 노심의 출력이 중앙부분에서 높게 되었다. 각각의 설계 노심에 대한 유량분배 결과는 표 2, 그림 3 및 표 4, 그림 5에 각각 나타내었다. 표에서 보 듯이 중식특성 노심은 핵연료 집합체 부분에 3개, 내부 불랑켙 집합체 부분에 2개, 반경방향 불랑켙 부분에 7개 등 총 12개의 유량그룹으로 나뉘어, 98.06 설계 노심에서의 저농축 핵연료 노심에 2개, 고농축 핵연료노 심에 4개, 반경방향 불랑켙에 3개의 유량그룹과 거의 같은 그룹 개수로서 전체적으로 유량그룹 부분에서는 비슷한 양상을 보였다. 그러나, 노심 중앙부분에서의 출력이 높아짐에 따라 집합체 유량의 최고값은 21.6 kg/s에서 39.8 kg/s 로 매우 높아졌으며, 이에 따라 최고 유량을 갖는 집합체의 평균 유속은 4.05 m/s에서 642 m/s 로 높아졌고, bundle 내 압력강하는 0.18 MPa 에서 0.42 MPa 로 매우 중가하였다.

2.2 노심내 집합체별 온도분포 계산

위와 같이 하여 노심내 접합체별로 분배된 유량에 따라 접합체별 피복관 중심 최고 온도를 계산하여, 그 온도가 설계제한값 내에 있는지 확인하는 반복 계산을 통하여 그룹별로 필요 유량이 결정된다. 핵연료 피 복관이 손상될 확률이 모든 접합체에서 일정하도록 해주는 것이 중요하기 때문에, 온도계산시에는 일반적으 로 각 접합체에서 최고 선출력을 갖는 연료봉의 피복관 중심온도를 같게 하는 제한조건을 적용하여 계산을 수행한다. 그러므로, 계산된 유량에 따라서 접합체별 냉각재 온도분포, 핵연료 피복관 중심 온도 및 최고 thermal striping 온도 (임의의 접합체에서의 냉각재 출구 온도가 주변 6개 접합체의 냉각재 출구 온도와 갖 는 차이값 중에서 최고인 값) 등을 구하여 제한조건 만족 여부를 확인하게 된다. 각 부분에서의 온도를 계 산할 때에는 각 단계마다 실제로 계산된 정규(nominal)값에 설계 및 계산에 의한 불확정성 인자들인 HOF(hot channel factor)를 고려하여 20값을 구하게 된다. 이렇게 불확정성 인자들을 고려하여 계산된 온도 는 최종적으로 확인하게 될 상세 부수로 해석 계산 결과 보다 매우 보수적인 값을 갖게 되는 것이다. 개념 설계 단계의 계산에서 일반적으로 사용하는 설계 제한값으로는 핵연료 피복관 중심은도를 680 ℃, 집합체 출구온도를 593℃, thermal striping 온도를 190 ℃, 핵연료 표면온도를 704 ℃, 그리고 연료봉 중심은도를 927 ℃로 사용하고 있다[5,7].

유량그룹별 최고은도 계산결과를 표 2와 표 4에 나타내었다. 표에서 알 수 있듯이 중식특성 노심의 경우 피복관 중심에서의 20 은도가 628 じ로서 98.08 설계 노심에서와 같게 조절이 가능하였다. 표에서 나타낸 계산값들은 유량영역 중에서 가장 높은 출력을 갖는 연료봉의 20값에 해당하는 온도이며, 각각 다음과 같은 의미를 갖기에 중요한 값들이다. 집합체 출구은도는 노심 상부구조의 열에 의한 노화에 영향을 주는 온도 이며, thermal striping 온도는 노심 상부구조의 열피로에 영향을 주는 값이다. 피복관 표면은도는 공용 (liquefaction)[8]에 그리고 핵연료 중심 온도는 핵연료의 용용에 영향을 미치는 값들이다. 그림 3과 그림 5 는 노심내 집합체별 최종 유량분배 및 그에 따른 온도분포 계산결과를 집합체의 위치, 집합체의 종류, 유량 그룹, 집합체 출력, 출구온도 값 등에 대하여 나타낸 것이다. 표에서 보듯이 다른 모든 온도들이 중식특성 노심에서 대체적으로 낮게 나타난 것은 98.06 설계 노심 계산에서는 ORFCE-T를 이용하여 온도를 계산한 반 면, 중식특성 노심 계산에서는 SUTHEN을 이용하여 더욱 상세하게 계산하였기 때문이다. 중식특성 노심에 대한 SUTHEN 코드 계산 결과 예를 표 5에 나타내었다.

3. 노심 열수력 설계 특성

액체금속로 KALDMER 중식특성 평형노심에 대한 정상상태 열수력 설계 특성과 금속핵연료 사용 98.06 설 계 노심의 열수력 설계특성은 다음과 같다. 두 노심은 모두 전기출력 150 MWe(열출력 392 MWth)로서 같 은데, 중식특성 노심은 비균질 노심으로서 U-Pu-Zr 삼원합금 핵연료를 사용하여 중식특성을 고려한 노심인 반면에, 98.06 설계 노심은 U-Zr 이원합금 핵연료 사용 균질노심으로서 중식특성을 고려하지 않은 노심이다.

두 노심 모두 같은 조건에서 유량분배를 수행하였는데, 중식특성 노심에서는 12개의 유량그룹으로, 98,03 노심에서는 11개의 유량그룹이 분배되어 비슷한 그룹으로 분배되었다. 또한, 피복관 중심 은도도 비슷한 값 으로 설계제한값 내에서 일정하게 유지할 수 있었다. 이것은 핵연료 및 노심 핵계산 작업과의 연계를 통해 서 노심 설계를 최적화시키는 작업을 지속적으로 수행해 온 결과로서 이전의 설계 노심에 비해 많은 향상을 가져온 것으로 볼 수 있다. 특히, 중식특성 노심의 최적화 작업을 위하여 많은 핵연료 및 핵계산 작업과의 연계 계산 작업을 수행하였는데, 그에 대한 상세한 기술은 중식특성 노심 개념설계의 세부사항과 함께 중식 특성노심 설계분석 보고서[4]에 자세히 기술되어 있다.

열수력 특성분석 결과 반경방향 비균질 노심인 중식특성 평형노심이 균질노심인 98.03 설계 노심에 비해 노심 중앙부에서 더 많은 유량이 필요하게 되어 노심에서의 압력손실이 그만큼 중가하는 것 외에는 큰 차이 를 보이지 않았다.

4. 결론

전기출력 150 MWe(열출력 392 MWth)의 U-Pu-10%Zr 삼원합금 핵연료 사용 소형노심인 액계금속로 KALIMER 중식특성 평형노심에 대하여 정상상태 열수력 설계 특성을 분석하고, 그 결과를 98.06 설계 U-Zr 이원합금 핵연료 사용 노심의 열수력 설계 특성과 비교하였다. 두 개의 설계 노심 모두 핵적 특성은 우수 하게 나타났으며[4], 특히 98.06 설계 U 노심은 음의 소듐 void 반응도가를 가짐으로써 노심안전성 확보 측 면에서 매우 양호함을 보였다[3]. 열수력 특성분석 결과 반경방향 비균질 노심인 중식특성 평형노심이 균질 노심인 98.06 설계 노심에 비해 노심 중앙부에서 더 많은 유량이 필요하게 되어 노심에서의 압력손실이 그 만큼 중가하는 것 외에는 큰 차이를 보이지 않았다.

본 논문에서 계산 및 비교·분석을 위해서 사용된 계산 도구는, 현재 KALIMER 노심설계 기술개발의 개 념설계 초기 단계에서 사용하고 있는 냉각재 유량분배 계산 모듈 ORFCE-F/T[5]와 그에 따른 노심 집합체내 온도분포 계산 코드 SLITHEN 코드[6] 등이다. 개념설계 초기 단계에서 계산된 집합체의 유량분포나 온도분 포는, 다음 단계 계산에서 현재 개발중에 있는 상세 부수로 해석용 코드 MATRA-LMR[9]을 사용하여 좀 더 자세한 계산을 수행할 것이다. MATRA-LMR 코드는 COBRA-VI-I를 기본으로 하여 경수로 해석을 위해 개 발하고 있는 MATRA 코드를 액체금속로 전용으로 개량·개발하고 있는 부수로 해석코드이다. 이 코드들을 이용하여 노심 전체에 대한 온도분포 계산과 단일 집합체에 대한 상세한 부수로 해석을 수행할 예정이다.

본 논문에서 기술한 KALIMER 중식특성 노심 (전기출력 150 MWe)을 기초로 하여 더욱 상세한 노심 부 수로 해석 작업 등을 통하여 최종적으로 KALIMER 중식특성 노심 설계 개념으로 확립할 수 있을 것이다.

감사의 글

본 논문은 과학기술부에서 시행하는 원자력중장기사업의 지원으로 수행되었습니다.

참고문헌

- [1] 박창규 외, "액체금속로 설계개념 연구", KAERI/RR-1719/96 (1996).
- [2] C. K. Park, et al., KALIMER Design Concept Report, KAERI/TR-888/97 (1997).
- [3] Y. I. Kim, et al., KALIMER Uranium Metallic Fueled Equilibirum Core Design and Analysis, LMR/CD100-ER-01 Rev. 0/98, Internal Document, KAERI (1998).
- [4] Y. I. Kim, et al., KALIMER Breeder Equilibrium Core Conceptual Design and Analysis, LMR/CD120-ER-01 Rev. 0/99, Internal Document, KAERI (1999).
- [5] 김영균 외, "KALDMER 98.03 설계노심의 열수력특성 분석", '98 훈계학술발표회 논문집, KNS (1998).
- [6] W. S. Yang, "An LMR Core Thermal-Hydraulics Code Based on the ENERGY Model", Journal of KNS, Vol. 29, No. 5, pp. 406-416, (1997).
- [7] D. H. Hahn, et al., KAERI Concept Study, GE Nuclear Energy (1995).
- [8] T. Yokoo, et al., "Design Study on Metal Fuel FBR Cores", T91013, CRIEPI (1991).
- [9] 김원석 외, "액체금속로 노심열수력 해석을 위한 부수로 해석코드 개발", '98 훈계학술발표회 논문집, KNS (1998).

그림 1 액체금속로 노심 열수력 개념 설계 및 분석 작업 흐름도

표 1 중식특성 노심 설계사양

Case Themail Output (MWth)	392.2
Case Electric Rower(MWe)	150.0
Net Flent Themail Efficiency(%)	38.2
Case Inde/Qui Temperature(T)	386.2/530.0
Total Flow Rate (kg/s)	2743
Active Core Height (cm)	120.0
Core Dian, etc. (cm)	344.30
Core Configuration	Heterogeneous
Noniser of Care Evernment Zones	1
Read Fuel Enrichments (W/O%)	28.00
Fuel Type	U-Pu-10%2r
Refaeling Interval (months)	18
Bendaling Batthor (Tonian (BCDB	27276
Producting Califics (Linear) (5, 16, 16) Dart legite Flat to Flat Distance (mm) Pins per Fael Assembly (Drinear/Blanket) Pin Cates Dismeter (Disnorr/Blanket) (mm) Pin Pun Bath (Drinear/Blanket)	149.60 271/127 7.40/12.0 1.209/1.089
Average/Park Ruel Burnup for Driver (MVD/kg)	778/1169
Ave/Park Linew Power for Driver (BOEC)(V/ch)	1848/2783
Park Fast Neutron Fluence (D-01 MeV) (x10 h/co)	1 249
Childing Material	HT9

표 2 중식특성 노심 유량영역 및 최고 온도 (2d)

Orifice Group	Assy Type	Assy Ct	Assy Plow (kg/s)	Bundle Pressure Drop (MPa)	Zone Plow (%)	Assy Outlet (°C)	Thermal Striping (C)	Cladding Midwall (°C)	Puel Surface (C)	Puel Center (°C)
1234567890112	rere e se	242622622262	39.80 34.70 12.15 12.50 8.70 5.30 4.80 2.45 1.80 1.55	0.43 0.34 0.11 0.12 0.02 0.02 0.05 0.05 0.05 0.05 0.05 0.0	65.3 12.2 19.4	449,888,7888,069,68 545,555,555,555,555,555,555,555,555,555	146 684588 68889888	ដដែសនិសនិសនិសនិសនិ ទំនាំទំនាំទំនាំទំនាំទំនាំទំនាំទំនាំទំនា	570 55555 5555 60532 6324 624 624 626 624 626 624 626 627 627 627 627 627 627 627 627 627	\$\$??????\$\$\$\$\$\$\$\$\$\$\$\$

Total primary loop flow : 2143 kg/s Total bypass flow : 2.0 %

그림 3 중식특성 노심 유량영역 구분 결과(1/6노심)

그림 4, 98.08 설계 노심 배치도

표 4 98.03 금속연료 노심 유량영역 및 최고온도 (2d)

Total primary loop flow : 2153 kg/s Total bypass flow : 2.0 %

표 5 중식특성 노심의 SLTHEN 계산결과 예

		TERFERMUN	NUMINAL TEMP	FRATURE C	ana sena nito	2-S18M	TEMPERATUR	E P	
ASSEMBLY	HEIGHT, CH	COOLANT			OD FUEL CL	COOLANT	CLADDIN OD	G NV	
(23,1) (23,2,2) (23,2,2,3) (23,2,3) (23	236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0 238.0	$\begin{array}{r} 559.9\\ 565.2\\ 005.0\\ 557.9\\ 557.9\\ 584.1\\ 570.4\\ 564.1\\ 564.4\\ 564.5\\ 570.8\\ 570.8\\ 559.6\\ 559.6\\ 550.8\\ 556.9\\ 562.5\\ 556.9\\ 562.5\\ 556.9\\ 562.5\\ 556.9\\ 562.5\\ 556.9\\ 562.5\\ 556.9\\ 562.5\\ 556.9\\ 562.5\\ 556.9\\ 562.5\\ 556.9\\ 562.5\\ 556.9\\ 562.5\\ 556.9\\ 562.5\\ 556.9\\ 562.5\\ 556.9\\ 562.5\\ 556.9\\ 562.5\\ 556.9\\ 562.5\\ 56$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 564.1\\ 580.1\\ 562.3\\ 562.3\\ 555.2\\ 577.0\\ 583.9\\ 577.0\\ 583.5\\ 563.0\\ 581.9\\ 581.9\\ 581.1\\ 559.8\\ 564.4\\ 559.8\\ 564.4\\ 559.8\\ 564.9\\ 564.9\\ 564.9\\ 564.9\\ 564.9\\ 563.9\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 021,9 1 508,9 2 619,2 2 519,2 2 519,2 2 519,2 2 519,2 2 519,2 2 519,2 2 515,2 8 607,5 8 507,5 8 515,7 2 521,5 9 522,9 9 522,5 9 522,5 9 520,6 5 525,5 9 520,6 8 527,6 8 527,6 8 527,6 8 527,6 8 527,6 8 527,6 8 527,6 8 527,6 8 526,8 2 526,8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29.8 24.5 24.1 27.6 27.6 21.2 29.6 21.2 27.9 26.0 27.9 27.8 22.8 22.8 22.8 22.8 22.4 29.1 22.1 29.1 22.5 29.3 29.3 29.3 29.3 27.5	
		*** <u>TENF</u>	PERATURES AT HE NONINAL TEMPI	IGHT OF PE ERATURE C	AK 2-SLENA FL	EL CENTER LINE	TENPERATURE 2-816NA	TEMPERATURE C	
ASSEMBLY	HEIGHT, CM	COOLANT	CLADDIN OD NV	9 10	FUEL OD DL	COOLANT	OD CLA	DDING NV ID	OD CL
(2334455558858545123568345) (23344555588588545123568345) (44555588588545123568345) (6686777778888856 (6686777778888856) (668688856) (668688856) (66868856) (66868856) (66868856) (66868856) (66868856) (66868856) (66868856) (66868856) (66868856) (66868856) (66868856) (66868856) (66868856) (668656) (668656) (668656) (668656) (668656) (668656) (668656) (668656) (668656) (668656) (668656) (668656) (668656) (668656) (668656)(668656) (668656) (668656)(668656) (668656) (668656)(668656) (668656)(668656) (668656)(668656) (668656)(668656) (668656)(668656) (668656)(668656) (668656)(668656) (668656)(668656) (668656)(668656) (668656)(668656) (668656)(668656) (668656)(668656) (66865656)(668656) (668656)(668656)(6685	186.0 191.0 195.0 186.0 186.0 191.0 191.0 191.0 211.0 211.0 215.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0 236.0	499.9 508.1 508.0 497.5 493.3 507.1 511.3 507.1 539.1 537.7 520.2 537.7 559.1 557.8 562.0 557.8 562.0 557.8 561.9 568.0 561.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 514.4\\ 544.8\\ 544.1\\ 512.1\\ 512.1\\ 528.8\\ 548.8\\ 548.6\\ 548.7\\ 545.1\\ 545.1\\ 545.1\\ 545.1\\ 545.1\\ 545.1\\ 545.1\\ 545.1\\ 559.2\\ 7\\ 564.1\\ 2562.7\\ 564.2\\ 2\\ 564.2\\ 2\\ 564.2\\ 2\\ 564.7\\ 2\\ 556.7\\ 2\\ 564.7\\ 2\\ 556.7\\ 2\\ 564.7\\ 2\\ 556.7\\ 2\\ 564.7\\ 2\\ 556.7\\ 2\\ 564.7\\ 2\\ 556.7\\ 2\\ 564.7\\ 2\\ 556.7\\ 2\\ 564.7\\ 2\\ 556.7\\ 2\\ 564.7\\ 2\\ 556.7\\ 2\\ 564.7\\ 2\\ 556.7\\ 2\\ 564.7\\ 2\\ 556.7\\ 2\\ 564.7\\ 2\\ 556.7\\ 2\\ 564.7\\ 2\\ 556.7\\ 2\\ 564.7\\ 2\\ 556.7\\ 2\\ 564.7$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	559.8 741 0 576.4 828.1 576.2 928.1 556.8 741 0 550.1 754 570.3 793 0 570.3 793 0 570.3 793 0 601.1 659.1 602.7 695 576.8 754 1 578.8 754 1 578.8 754 1 578.8 754 1 578.8 754 1 502.7 639 1 622.7 639 1 622.7 639 1 629.2 655 1 629.2 655 1 629.2 655 1 629.5 644 1 627.6 637 1 627

+++ TEMPERATURES AT HEIGHT OF PEAK 2-SIGMA CLAD MIDVALL TEMPERATURE +++