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Abhstract

This article represents an algoritlum  to  reconstruct  crosssectional  distritnation the
capacitance  tomograpley sensor. The electric fleld in the test tube iz calewlated by a newly
proposed  FDE  solwver based on artificial  newal network Newton-Raphson method mirdmizes
the sguare of error between the measued and  caleulated  capacitance signals for the hack
projection of tomographe image.

The preserd PDE solwer within 10 accwracy could  successfully identify electric fleld in
the test tube. Also, for the good irdtial  guess, the back projecton was made efficiently to
iderdify well the cross sectional distribgion of  woid for the anmdar  flow,  core flow, and
stratified flow.

Eey word : Capacitance Tomography, Back Projection, Partial Differential Equations,
Neural Metworks,

1. INTRODUCTION

The progress in the electric tomography technology expands fast in recent[l]. Among  them,
the capacitance tomography[2] iz stadied here to walidate its applicability to the two-phase flow
in the nuclear industry and  to provide a new software for the image reconstruction for the
better wtilization. As far as the author's  known the heawy caledation burden to get the
tomography  image, nommal to every inverse problem, generates a negative sight for its use in
the process industry, Also, the low lewvel capacitance signal due to its  irnverse relation to the
distatice bebween the electrodes needs  a wery sophisticate electronics of high acowacy and
strong  resistance  against  noise In this paper, the problem related to the  software,
comptational brden and  acowacy, 15 irrestigated by preparing  a new  PDE solwer for the
electric field calewlation.

The direct inversion tried at the begimming stage of this techrigque is now improved by
adopting  the fimte  difference[3] o element method[d] with a optimization technigue. The
progress head on development of mote accowate and  fast PDE  solwer and  optimization



techudgue.  Also, WMamger[3] proposed a table loockup method for real time application with
rematkable accuracy. Artificial newral network[d] has been tried by uwsing its learning capability
to reproduce image.

&g one of trial in this progress, the presert  stody is designed to develop a system  with
tniew PDE solver and to study its performance for the  capacitance  tomography. The
wotkahility in the parallel processor and  mesh independency are consdering factor in choosing
the FPDE solver. Since the computational load for solving the difference ecuations increases
wery fast as the munber of discrete points becomes large. Before  implementing to the parallel
computer,  the present paper want to report the  feasible  performance of the present PDE
systemn based on the artificial neural network for the capacitance tomographe.

2. Electric Field Computer Tomography system

Recent progress in the electric tomography give a promise of possible application to the process
industty for the control pwrpose. After inventing  the capacitance tomograply with E
rectangildar electrodes, its basic structure is not  too much  evolved et In the present  study,
the £ electtodes are adopted to the 508 eom in irmer  ddameter tube with  standard coupling
assetibly iz developed  their excitemoert and data acousition are diven by the electric
circuit  developed for this  parpose. Figures 1 and 2 show  the  capacitance  tom ographoyy
and driving electronics[3)
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Figl. The capacitance totmograpleyr sensor  Fig2  The conceptual  drawing of electrordcs
developed for the capacitatce tomograply senso

3. Development of the analysis tool
31 The governing FEgquation for the electric tomography

The electric field in the test space is  determined by the well known Polsson's equaticn as
v elH)va=—p(x) (1



whete g iz the dielecttic constant, @ is the electric potential, and o iz the charge density.
Due to Gauss law, the inter  space, the electric  charge is not  acowndated except bowndary,
ie the suface of the electrode. The charge  accumulated at the smface of the electrodes I
atid {  could be measured by the capacitance:
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The problem  is simply stated as determination of the dielectric  constant profile in the test

-

space using the meamwred capacitance using the above goverming ecuation for electric field

3.2 PDE Solver by neural Networks

Most of the previous wotk ih solving differertial equations using neural networks is restricted
to the case of solving the linear systems of algebraic equations which resolt from  the
discretization of the domain. The sdution of a linear system of equations is moapped onto the
atchitechare of a Hopfield newral nebrork. The minimization of the nebrotk's energy function
provides the sobion to the system of equations[l, 2], Howewer, in this  study, a new PDE
based on a feedforward nevral network is  introduced

Consideting the following general differential equation:
- - - -, ->
Glx, P(x), v P x), v F(x)) =0, *€D @

subject  to  certain  boundary  conditions  (for  instance  Dirichlet  andfor Wewmatsn), whete
= (%1, ..., x 0= R® | DCR® denctes the defirition domain and QJ"(__;} is the solution to he
computed.  To obtain a solubion to the above differential ecuation the collocation method is
adopted which assumes a discretization of the domain D and its bounday 3 into a set points D
and & respectively, The problem is then transformed into the following system of ecquations:
G, W), v W), v %) =0, VreD @
subject to the cotstraints imposed by the B.Cs
If ?,ET,;(__;,:E} denotes a trial solution with adjustable parameters _33, the problem iz transformed to
min 4 gﬂﬁi, Tx, B, 7 B, 20,7 %0(x, 9 )
subject to the cotstraints imposed by the B.Cs
In the proposed approach the trial solution &, employs a feedforward neural network and the
paratn eter s _33 cotrespotd to the weights and hases of the newal architecture. We choose a form
fror the trial function @'3(_;:} gsuch that by construction satisfies the BCs This achiewved by
writing it as a sum of two terms
(%) = A+ Flx, N(x, ) ®
where N(;;} iz a single-outpat feedforward newral network with parameters _33 and 1 ingod

-

urdts fed with the imgat wvector x.



The term Al:__;} contains no adjustable parameters and satisfies the boundary condtions The
second term F iz constracted so as not to contritute to the BCs since @'3(;} must also satisfiy
them. This term employs a newal network whose weights and tiases are to be adjusted in order
to deal with the mimimization problem. The efficient mimmization of Egq3 can be considered as
a procedure of training the teural network where the etror cotresponding to each ingnd vector
;:- is the walue G(;:} which has to become zero Computation of this error walue invalves not
ordy the network output (as is the case in corwventional traiming) ot also the deriwatives of the
outpnt with respect to any of its inputs. Therefore, in computing the gradient of this error with
respect to the network weights we need to compute not orly the gradient of the network bt
also the gradient of the network derivatives with respect to its inpouts.

Consider a multilayer perceptron with n gt undts, ore hidden layer with H sigmoid units and

a linear outpat wait
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Fig 3 Mlutilayer Perceptron with H hidden units and a outpd unit.

For a given input vector x= (%1, ..., % the output of the netwotk is
N= jwa{zg} (7
=

where z,= gwéx5+ T denotes the weight from the input wnit j to the hidden unit i, o,

denates the weight from the hidden unit 1 to the oubpdt, 2, denotes the bias of hidden unit 1

and g0z is the sigmoid transfer function The gradient of the network derivatives with respect

to itz inmd, x; is

aN T
E'x,- = E=lvawyd (3;' =)
Therefore we have
B
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where g;= gl z)and g9 is the keth order derivative of the sgmoid
This leads to
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where P,= Elwi* and A = !Z:l}ii;
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Eruation (&) denctes that the derivative of the original network with respect to any of its outpods

is equivalent to a feedforward neural network NE(;} with one lidden layer.

Tahk 1. Comparison the network parameiers between original and equivalemt nebwork.

Original Equiralent
MNetwork Networds
Outpuat of the network H H,
The weight from the input undt § to the hidden umit i Wy Wi
The bias of hidden unit i 1 W
The weight from the hidden wunit 1 to the output Wi WP
Transfer function i g

Thetrefore the gradient of N, with respect to the parameters of the original network can be

easily obtained as
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Let us apply the abowve algorithen to the Poissorls ecuation:
52 52
e @Ix.yﬂa—yg o, v =1, 3

x=[0,1] , »=[0,1] with Dirichlet BC:

i, =4, Tl =5n, A,B=glx), Fx,D=glx

The trial sohation iz written as

Pl p=Alr, 9 +x1— 21— DMz, v, 5

where Ax, v is chosen so as to satisfy the BC, namely
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Alx, = (1— 97, (J’:""I.i‘f]':_'l?} (17
+01 =gy =[] =yl + g (1] iy () — [ (1 —xdagy () + 22y (1011

In PDE provlems the error to be minimized is given by
- 52 52 2
E[3] 2;\[@ @'(If-?f}'i'a—yg WMy, 34 ‘.i"fxsr-:l?ﬂ'] (12

where (x;, %) are points in [(,1] [0, 1]

We consider boundary wvalue problem with Dirichlet BCs, Following problem was defined on the
domain [0,1]%[0,1]and in order to perform  training we consider a mesh of 100 points
obtained by considering 10 equidistard points of the domain [0,1] of each wariable

In analogy the neural architectore was considered to be a multilayer perceptron with two inpots
(accepting the coordinates x and v of each poinf), 10 sigmoid hidden units and one linear outpot

unit. The sigmoid activation of each hidden urit is d’(x]l=F_]TxThB exact analytic solution
[

{I'&(_j:} was known in advance. Therefore we test the accuracy of the obtained solutions by
. . - -> -, S
computing the deviation AP(x =3 x)— D, (%) To perform the error minimization we

employed the steepest descent method.

33 The BRBack Projection DMethod

The back projection to determine the tomographe image using the capacitances measwed form
the electrodes is follows the well known optimization techrigue of Wewton-Raphson
The procedures ate made to mirimize the etror between the teaswed one and calowlated one
by adjusting the dielectric constants in the mesh
Discretization of Eq.(2) resdts in the following algebraic relation for caleulated capacitance of
f1 th sequential pairs between electrodes asm

Cao=Cpy= Z}l glﬂa;jfa;fﬁa;;‘ (1)
where n iz the sequertial munber of electrode pairs wp to 28 for £ electrodes, the subscripts
[T are the sequential mwmber of electrode and i is the indicating roamber of mesh
The oljective function to be minimized iz the total semmation of the  all errors between the

measwed capacitance and the caleulated one:

0= 2= 2 Crir=Cnd® @

. .2 .
0= Zl Zlﬂa;je‘a;jcﬁa;# Biei it Cij @D
The minimization of the objective function is made as
k
B+1 B i) B+l _
07 =0 =2 0| ey — e (22)
o

Since the ktl th  stage objective function should ke 0, the changed dielectric constant is



determitied as

E
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4. Results and Discussions
4.1 Accuracy of the PDE solver
To evaluate the present PDE solver, the following  two coupled PDEs having analytic solutions

are used:
1
[ 553;] t 5;3'1;1 —2dy=e " {x+ 30+ 12y~ B — 22— xip
(24)
1 d%a, 8%, P 2 3ty g2
Rt 0,0, &, =2x(f — 38 — 2B + P23 — ANt 5+ )
with %, v=[0, 1]and Dirichlet Boundary conditions
[ 3,0 0="+8y . & (LA=e 1+ +65)
@y fr, D =xet . Eyix D=+ e (25)
1 Byll, 3) =0 . B, 9 =(2 -2
By, () =2 N NERVEPIRES o
Itz analytic solutions ate as follows:
@, =e " x+ 37 + 690
(26)
0y=(2— P

Accuracy resuts are preserted in Figares 4, 5 for the traiing points with a reasonable range..

Fig5 Accwracy of the compuied
sohuion

at the training points, | A J,|

4.2 Electiric field in the capacitance tomography

The PDE zalwer iz applied to Poison equation of the eylindtical geometry and  successfully
calculate electric field as shown in the Figs 10 and 11, where the filed spikes  generated



from the electrode of applying voltages and  that attaching to the ground. Figare 6 shows the
electtic field when the tube iz filled with water fully where the order of electrodes pating are
1.2, 1.3, 1-4, 1.5, 1-6, 1.7, 1-E, respectively. Also,  the electric field for the tube filled in
half with  water in an  stratified  flow way are presented in the Fig? Since the  low

capacitance in the PF level prevert us from recognize its difference in a sight.
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Figt the electric field cdeulated for the fully filled eylinder with water

Fig? The electric field caledated for for the halffilled cylinder with  water

43 Back Projection Resulis of the Two-p hase tomograp hy

Uszing the deweloped  electric fleld calculator, the back projection is made by changing the
dielecttic  constart  in the  each cell.  To achieve  fast  comwvergence,  The pdtern
cottespondent to the flow pattern in specific iz identified before operation. In order to see the
error propagation to the back projection,  28th random noises are  gernerated for each electrode
patings and  added to the capacitance calewlated to impose the observation emror.

&g shown in Fig £, the stratified flow i well reconstacted by the present
algorithm. The foise affect the resdt by removing two nodes of water in the mesh which is
less than 5% of etror in terms of  woid fraction.  Figure 9 shows the results of  slug flow
where the  error iz widely spread around the  cirenlar mesh  But iz hardly  to set the
epsilon value using the water and alr only. Figwe 10 shows that the core  flow resulting in
the wery low capacitance signals bt its  inage  cowld be  successfully  projected in the
backward direction. The present algorittyn  successfully  projects the  patterns showing in
Fig1l. Howewer, it iz still dfficult to identify tiny  bubbles.  For the practical  usage,
algorithn showld be  improved in both  speed and  acouracy.
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Fig & The tomograply image for the stratified Fig® The tomogrpaby image for the slug

fl o floar

Fig 10 The tomography image for the core Figll The tomogtpahy image for various

floar flow patterns

5. Conclusions

In the present study, a software for capacitance tomography having a new FDE solwer based on
the artificial newal network of parallel processing  capability and  independency from mesh.
The cross sectional distributions of  gas in the test tube for  wvarious flow regimes such as
the stratified flow, argwlar flow,  ecore flow are identified  well with the HNewton-Raphson
optimization by mimimize the capacitance error between measured and the calculated

Through  the present study, it coud be concluded that the capacitance  tomography  coud he
implemented by the  present algorithen.  Howewer, for the  tiny bubbles, study should be
exterded
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