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Abstract

The method of characteristics used in the CRX lattice calculation code is acceler-

ated with the coarse mesh rebalance (CMR) method for inner iteration and the coarse

mesh/coarse group rebalance (CGR) method for outer iteration involved with the eigen-

value search. The CRX code with these two acceleration methods was applied to two

multigroup eigenvalue problems with isotropic scattering and one multigroup eigenvalue

problem with anisotropic scattering to show the e�ectiveness of the acceleration methods.

The numerical results show that the acceleration is e�ective in reducing the number of

iterations and the computing time in both isotropic and anisotropic scattering cases.

I. INTRODUCTION

The method of characteristics (MOC)([3],[4],[5],[6],[7],[8]) which combines desirable fea-

tures of the integral transport and SN methods have been considered as an e�ective method-

ology in the lattice calculation. This method gives accurate solutions in complex geometries,

strong absorber problems, strong anisotropic problems and so on, while its calculation pre-

serves the simplicity of the SN method. It divides directions like in SN and for each direction

performs transport calculation like the collision probability method by integrating the di�er-

ential form of the within-group transport equation along its parallel characteristic lines. For

better accuracy, it needs many rays and �ne angle divisions. Like most of the transport meth-

ods, MOC also requires long computing times for scattering dominant problems and problems

with signi�cant upscattering. Therefore to reduce computing time, it needs to be accelerated.

Although there are many acceleration techniques([11],[12],[13],[14]) in the discrete ordinates

transport calculation, these methods cannot be applied directly to or used e�ectively in the

method of characteristics.

In this paper, the coarse mesh rebalance (CMR) method which uses the fact that converged

solution must satisfy the neutron balance equation and can be easily implemented for various

methods in general geometry was used for accelerating the inner iteration involved with the

scattering source iteration. For eigenvalue problems, there are several ways to apply the coarse

mesh rebalance method (e.g., whole-system group-wise, coarse mesh all-group-collapsed, and

coarse mesh group-wise rebalance methods[1]). In this paper, a coarse mesh/coarse group



rebalance method including the coarse mesh group-wise rebalance as a particular case was

used to accelerate the outer iteration. With this coarse mesh/coarse group rebalance method,

the rebalance equation leads to an equation that resembles a multigroup �nite-di�erenced

eigenvalue problem. Therefore, this equation can be solved with two iteration schemes (i.e.,

inner and outer iterations).

The numerical tests of the acceleration method for multigroup eigenvalue problems includ-

ing anisotropic scattering problems show that the coarse mesh group-wise rebalance method

is best in terms of the reduction of the number of iterations and the computing time.

II. THEORY AND METHODOLOGY

II.1 The Methodology of the CRX Code

To describe the method of characteristics, the starting equation is the within-group trans-

port equation in discrete ordinate form :
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where wn is weight for direction 
̂n (�n : polar angle, �n : azimuthal angle), L is the order

of anisotropy of scattering (up to L=3 in the current version of CRX) and the moment �mlg is

given by

�mlg(~r) =

NX
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wnY
�

ml(
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where N is the number of directions. Eq.(1) can be rewritten in the following di�erential

form :

sin �n
d g;n

dp
+ �g g;n = qg;n; (3)

where p is the projected coordinate on x � y plane of the coordinate along the neutron

trajectory for direction 
̂n. The equation for the outgoing ux along a ray in computational

mesh (i; j) with the at source approximation is obtained by analytically integrating Eq.(3) :
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where Ln;l is track length of the l'th ray for direction 
̂n in mesh (i; j). The average ux

along the ray included in mesh (i; j) for direction 
̂n is obtained by integrating Eq.(3). The

equation is given as follows :
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However, to perform the scattering source iteration, the average angular ux over the com-

putational mesh is required for generation of the source. The equation for the average ux

over the computational mesh is obtained by summing the average uxes (Eq.(5)) over the

rays passing through the mesh. The equation is given as follows :
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X
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where Æn represents spacing between adjacent rays for direction 
̂n, and A is the area of

mesh (i; j). The mesh indices i; j were omitted in the above equations. In the method of

characteristics, Eqs.(4) and (6) with a general tracking module are complete for transport

calculation.

II.2 Coarse Mesh/Coarse Group Rebalance Method

The balance equation obtained by integrating Eq.(1) is given by

~r � ~Jg(~r) + �rg(~r)�g(~r) = Sg(~r); (7)

where �rg = �g��s0gg , ~Jg is the current vector and Sg(~r) is the integration of the sum of the

scattering source from other energy groups, �ssion source and anisotropic scattering source.

The odd order terms of the anisotropic scattering source in Sg(~r) vanish by integration over

all directions but the even order terms remain depending on the chosen angular sets. In the

second order anisotropy, the following two terms remain :
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where �n and �n are the direction cosines of 
̂n with respect to x and y coordinates, respec-

tively. If using SN quadrature sets, integration of the even order terms of the anisotropic

scattering source over all directions will become zero. But CRX does not use SN quadrature

sets. Thus the above anisotropic scattering source term must be considered. Then by inte-

grating this equation over coarse mesh ~Vm (in this paper, a cell is taken as the coarse mesh)

and applying divergence theorem, we can rewrite this equation as follows :
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where �mm0 is the surface between ~Vm and ~Vm0 ,and n̂ represents unit normal vector of �mm0 .

Coarse mesh rebalance method requires that the new iterate  t+1
g (~r; 
̂n) must satisfy this



balance equation for each cell, and this is accomplished by multiplying the unaccelerated

iterate ~ t
g by a factor fm;g for each coarse mesh ~Vm :
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where F.S represents �ssion source, I.S represents isotropic scattering source from other energy

groups, S.A represents self group anisotropic scattering source and A.S represents anisotropic

scattering source from other energy groups.

In the CRX code, the integrals over the top or bottom cell of Eq.(13) is calculated as

follows : Z
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and over the left or right cell is calculated as follows :Z
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To close the rebalance equation (Eq.(11)), the current continuity relations are used to obtain

incoming current.

For an eigenvalue problem, Eq.(11) can be expressed as follows :"Z
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where k is outer iteration index,

Summing Eq.(17) over a coarse energy group (gc) with the assumption that the rebalance

factor is common in the coarse energy group gc gives the following equation :

X
g2gc

2
4Z

~Vm

dV

8<
:�g ~�kg �

X
g0
2gc

�s0gg0
~�kg0

9=
;+

X
m0

Z
�
mm0

d� ~Jkg+ � S:Ac

3
5 fm;gc

�

X
g2gc

X
m0

Z
�
mm0

d� ~Jkg�fm0;gc =
X
g2gc

�
�g

keff

Z
~Vm

dV (F:Sc) +

Z
~Vm

dV (I:Sc +A:Sc)

�
;

(18)

F:Sc =

GcX
g0

c
=1

X
g0
2g0

c

(��f )g0
~�kg0fm;g0

c
;

I:Sc =

GcX
g0

c
=1;g0

c
6=gc

X
g0
2g0

c

�sgg0
~�kg0fm;g0

c
;

S:Ac =
X
g0
2gc

LX
l = 2

l = even

lX
m=�l

(
NX
n=1

wnYml(
̂n)

)
�slgg0

~�
m;k
lg0 ;

A:Sc =

GcX
g0

c
=1;g0

c
6=gc

X
g0
2g0

c

LX
l = 2

l = even

lX
m=�l

(
NX
n=1

wnYml(
̂n)

)
�slgg0

~�
m;k
lg0 fm;g0

c
;



where Gc is the number of coarse energy groups and fm;g = fm;gc for g 2 gc. This equation

looks like the �nite di�erenced equation of the multigroup di�usion equation involved with

the eigenvlaue. Therefore, this equation is solved iteratively.

II.3 Calculational Procedure

Prior to the start of the iteration, the CRX code calculates ray track lengths in each mesh

by a general geometric tracking routine. Next, initial �ssion source, multiplication factor

and incoming boundary uxes are assumed to start the �rst outer iteration. The transport

sweep is then performed to calculate the mesh averaged angular uxes and the coarse mesh

rebalance method is used for accelerating the scattering source iteration for each energy group.

At this point, it must be noted that the coupling among the thermal groups by upscattering

is stronger than the coupling via the �ssion source. Therefore, a distinction should be made

in the eigenvalue iterations on the �ssion source and upscattering iterations[10]. Hence,

before starting a new eigenvalue iteration, additional upscattering iterations are performed

on the thermal groups. Next, after the upscattering iteration, the coarse group rebalance is

performed to improve the �ssion source and the eigenvalue. In inner iterations, too strong a

criterion may require many inner iterations in early phase of the outer iteration. So in this

paper, the inner iteration criterion decreases gradually at every outer iteration step from a

loose criterion (�rst 10�2 and then equal to the maximum ux error of the �rst energy group

in the previous outer iteration step) to a strong criterion (10�6). This procedure is shown in

Figure 1.

III. NUMERICAL RESULTS

We solved several problems to test the CMR/CGR acceleration eÆciency in CRX. In the

following tables, speedup represents the ratio of the computing time without acceleration to

the computing time with acceleration. The notation CRX(a; b; c) represents that the test

was performed under a angular divisions in azimuthal direction, b angular divisions in polar

direction and c rays in each direction over the problem domain.

To show the e�ectiveness of CMR for isotropic scattering, we chose NEACRP2 (Figure 2)

and BWR 4x4 (Figure 3). We accelerated the outer iteration of these problems by applying

CMR/CGR (all-group-collapsed), coarse group, and group-wise methods. In coarse group

rebalance method, we grouped mutigroups into two coarse groups. The notation CGR[1; g]

in Tables 1 and 2 represents that the groups from group 1 to group g � 1 were grouped into

the �rst coarse group and the groups from group g to group G were grouped into the second

coarse energy group.

For these problems, convergence criterion of 10�6 for eigenvalue and �ssion source were

used. The results for NEACRP2 are given in Table 1. The results show that the number

of iterations and the computing time are reduced as the number of coarse energy groups

(i.e., gc) increases. Therefore , the group-wise rebalance method is best in comparison with

others. The reason is due to the fact that for problems with signi�cant upscattering the

group-wise rebalance method gives the most detailed description of the energy dependence of

the rebalance factor and the computing time for solving the rebalance equation is relatively

short compared to the total computing time.

The results for a BWR 4x4 problem is given in Table 2. In this problem, the results show

that the computing time with the group-wise rebalance method is reduced to 1/6 of that of



Table 1: Results of NEACRP2 (6 groups), CRX(8,4,250)

# of outer iterations Computing time� (sec) Speedup

No acceleration 68 745.38 1.0

CMR/CGR (all-group-collapsed) 10 285.92 2.61

CMR/CGR[1,3] 9 268.01 2.78

CMR/CGR (group-wise) 7 198.22 3.76
� on Intel Celeron 300A CPU

Table 2: Results of BWR 4x4 (7 groups), CRX(8,3,600)

# of outer iterations Computing time (sec) Speedup

No acceleration 112 3140.26 1.0

CMR/CGR (all-group-collapsed) 13 802.16 3.91

CMR/CGR[1,3] 11 597.56 5.26

CMR/CGR (group-wise) 10 516.93 6.07

no acceleration and that the number of iterations and computing time are reduced as the

number of coarse energy groups increases. The coarse mesh group-wise rebalance method

also shows the best results in this test problem.

To test eÆciency in problems with anisotropic scattering, the 7x7 BWR fuel assembly

problem in Ref. 15 (Figure 4) was selected and modi�ed. The isotropic components of the

cross section data are described in Table A1 of Ref. 15. We removed water gaps and assemlby

walls in the original problem and added anisotropic scattering cross sections whose values are

a tenth of the isotropic scattering cross sections.

Table 3: Results of BWR 7x7 (2 groups) with mesh division I, CRX(4,4,400)

order of anisotropy # of outer iterations Computing time (s) Speedup

0

No acceleration 147 234.97 1.00

CMR/CGR (all-group-collapsed) 12 44.56 5.27

CMR/CGR (group-wise) 14 47.46 4.95

1

No acceleration 147 245.13 1.00

CMR/CGR (all-group-collapsed) 13 44.93 5.46

CMR/CGR (group-wise) 11 43.43 5.64

2

No acceleration 147 266.09 1.00

CMR/CGR (all-group-collapsed) 13 49.44 5.38

CMR/CGR (group-wise) 11 47.88 5.56

3

No acceleration 147 302.86 1.00

CMR/CGR (all-group-collapsed) 11 54.17 5.59

CMR/CGR (group-wise) 11 54.16 5.59

The results are shown in Tables 3 and 4. This problem does not have upscattering. Thus the

signi�cant di�erence in eÆeciency between accelerations of all-group-collapsed CGR and of



Table 4: Results of BWR 7x7 (2 groups) with mesh division II, CRX(4,4,400)

order of anisotropy # of outer iterations Computing time (s) Speedup

0

No acceleration 147 402.64 1.00

CMR/CGR (all-group-collapsed) 12 76.88 5.24

CMR/CGR (group-wise) 15 81.70 4.93

1

No acceleration 147 420.94 1.00

CMR/CGR (all-group-collapsed) 11 76.47 5.50

CMR/CGR (group-wise) 11 75.22 5.60

2

No acceleration 147 457.97 1.00

CMR/CGR (all-group-collapsed) 11 81.69 5.61

CMR/CGR (group-wise) 11 81.67 5.61

3

No acceleration 147 522.07 1.00

CMR/CGR (all-group-collapsed) 13 97.35 5.36

CMR/CGR (group-wise) 11 92.68 5.63

group-wise CGR does not appear. The speedup is about 5 � 6. Note that the speedup in

anisotropic scattering problems is slightly better than that of isotropic scattering problems.

IV. CONCLUDING REMARKS

The coarse mesh rebalance method for inner iteration and the coarse mesh/coarse group

rebalance method for outer iteration were implemented in the CRX code of the method

of characteristics and applied to two multigroup eigenvalue problems without anisotropic

scattering and one multigroup eigenvalue problem with anisotropic scattering. The results

show that the group-wise coarse mesh rebalance method is the most e�ective in problems

having upscattering. This is due to the fact that for problems with signi�cant upscattering as

in the test problems the group-wise coarse mesh rebalance method provides the most detailed

description of the energy dependence of the rebalance factor and the computing time for

solving the rebalance equation is relatively short compared to the total computing time. The

speedup achieved by the acceleration is typically about 3 � 6.
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Figure 1: Flow chart of the CMR/CGR-accelerated CRX algorithm



0.1cm

0
.
3
c
m

2cm

Pin radii
fuel 0.620cm
clad 0.715cm

Figure 2: Con�guration of NEACRP2

1.6cm

0.6cm

0.5cm

Mesh division

Burnable 
Poison

Fuel

Moderator

Figure 3: Con�guration of 4x4 BWR



2 1 1 1 1 1 3

1 1 1 5 1 1 2

1 1 1 1 1 1 2

1 5 1 1 1 5 2

1 1 1 1 1 1 3

1 1 1 5 1 2 3

3 2 2 3 3 42

Mesh Division I Mesh Division II

1.
87
45

cm

Figure 4: Con�guration of 7x7 BWR Fuel Assembly


	분과별 논제 및 발표자

