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Abstract

Analytic solutions of the multigroup discrete ordinates transport equation with linearly
anisotropic scattering in slab geometry are obtained by using infinite medium Green’s func-
tion (IMGF) and Placzek’s lemma. In this approach, the infinite medium Green’s function is
derived analytically by using the spectral analysis for the multigroup discrete ordinates trans-
port equation and its transposed equation, and this infinite medium solution is related to the
finite medium solution by Placzek’s lemma. The resulting equation leads to an exact relation
that represents the outgoing angular fluzes in terms of the incoming angular fluzes and the
interior inhomogeneous sources for each slab. In multi-slab problems, the slabs are coupled
through the interface angular fluxes. Since all derivations are performed analytically, the
method gives exact solution with no truncation error. After the interface angular fluzes are
calculated, the continuous distribution of the angular fluz (i.e., analytic solution) in each slab
are calculated straightforwardly with IMGF. Therefore, in our method, the number of meshes
that is equal to the number of the homogeneous slabs is sufficient.

I. Introduction

Since the neutron transport equation cannot be solved analytically even in slab geometry,
much attention has been given to the problem of obtaining accurate numerical methods of
the transport equation. The discrete ordinates approximation of the angular variable and the
multigroup approximation of the energy variable are the most direct approach for simplifying
the complexities of the transport equation. Recently, some authors have devised exact solution
methods with no truncation error for solving the multigroup discrete ordinates problems in
slab geometry. First, Barros and Larsen[2| have developed the spectral Green’s function
method (SGF) method where an exact relation between cell-edge and cell-average angular
fluxes is derived by using a spectral analysis (i.e., obtaining eigenfunctions). Second is a
direct method by using the Laplace transform(®! and its inverse transform.

In this paper, a new method that gives analytic solutions (with no spatial truncation
error) of the slab geometry multigroup discrete ordinates transport equation with linearly
anisotropic scattering is presented. This is an extension of the one group method! by the

authors. The method is based on the infinite medium Green’s function and Placzek’s lemmal®!.



The IMGF is derived analytically by using the spectral analysis for the multigroup discrete
ordinates transport equation and its transposed equation. The infinite medium solution is
related to the finite medium solution through the Placzek’s lemma. This procedure gives an
exact relation that represents the outgoing angular fluxes in terms of the incoming angular
fluxes and the interior inhomogeneous source for each slab. In multi-slab problems, the slabs
are simply coupled through the interface angular fluxes. Therefore, the interface angular fluxes
are calculated by using an iteration method. After these interface angular fluxes are obtained,
the continuous distribution of the angular flux in each slab are calculated straightforwardly
with IMGF.

Our method is new in the area of the discrete ordinates transport methods. In case of the
continuous angle, Casel® originally obtained IMGF of the one group transport equation with
singular eigenfunctions while the evaluation of IMGF is difficult and numerical results were
not readily available. Second, the Case’s IMGF has been used in the Fy [Pand Cy ®lmethods
that gives very accurate solutions. In case of multigroup problems, the IMGF is obtained by
using the Fourier transform!®! and its inversion rather than Case’s methodology. A similar ap-
proach by Ganapoll?:[10] was recently performed to obtain highly accurate solution (analytic
benchmark solution) of the one group transport equation. However, to our knowledge, IMGF
of the slab geometry multigroup discrete ordinates transport equation has not been derived
and used to solve multi-slab problems. Therefore, the key feature of our approach is the
analytical derivation of IMGF of the multigroup slab geometry discrete ordinates transport
equation with linearly anisotropic scattering and its effective use in generating the analytic
solutions for multigroup mult-slab problems.

II. Theory and Methodology

I1.1. Spectral Analysis

The multigroup slab discrete ordinates transport problems with linearly anisotropic scat-
tering is described by

Hm dd)gzx(ai) —+ ZJm(IL‘) = ESO$($) + 3Nm251$1 (:L‘) + q"m (J;)’ (1)

where the vector 1/7m has components %), , which are the angular fluxes for each energy group
g and direction m, the vector qg has components ¢, which are the scalar flux for each energy
group g and the vector qgl has components ¢, which are the net current for each energy
group g. In Eq.(1), the scattering matrix (Xg9) that represents the isotropic component of
scattering is defined by

00,151 0021 0031
00,152 00252 00,352
Yso = | 00,153 00253 0033 - - |, (2)

and the scattering matrix (Xs;) that represents the linearly anisotropic component of scat-
tering can be similarly given and the diagonal matrix 3 has components that are the total



macroscopic cross section for each energy group. To obtain the eigenfunctions, the homoge-
neous equation of Eq.(1) is considered :

At (z)
™ dx

+ ZJm (]7) = E5093(37) + 3Nmzsl($1 (:E) (3)

We seek solutions of the following form[!1:[2] :

Y (@) = G, (). (4)
Substituting Eq.(4) into Eq.(3) gives

(L4 ) ) = S0 o) + 3y Bea 81 (), ®)

N N
where Ny(v) = Z Wiy (tm) and Ny (v) = Z Win o B (1om )-
m=1

m=1
After some algebraic procedures with Eq.(5), the following eigenvectors are obtained :

N
Now) = Y wa (22T 4 2) 100 Ny (v)
m=1
~ Km 1 N (6)
+ ) w3 (= T4 2) T S (S - Se0)No(v),
m=1

Ni(v) = v(E — Se0)No(v).

The eigenvalue (v) is determined by the following characteristic equation :

N
Hm -1
det[T — m(— 22T+ 2) e,
e[ mzlw ( » + ) 0
N } (7)
- b (— 2L+ )TN (2 — Seo)] =
3ymzlw o ( > +3) 1( 0)] =0,

where det means the determinant of a matrix. Eq.(7) is a polynomial of G x N’th degree
and its roots ( v) are the eigenvalues of the G group discrete ordinates problem (i.e., Eq.(3)).
The roots are symmetrically distributed around the origin due to the symmetry of the Gauss-
Legendre quadrature set. In practical problems, the eigenvalues are all simple and real (in
eigenvalue problems having fission source, complex eigenvalues can occur).

Since the orthogonality of the eigenvectors was efficiently used in analytically deriving the
IMGF of the one group problems, a similar property is devised in the multigroup problems.
Unfortunately, the orthogonality does not exist in case of the multigroup problem. However,
the bi-orthogonality'?) between the eigenvector of the forward problem and the eigenvector
of the transposed problem has been found in the contiunuous angle case. In this paper, the
bi-orthogonality is derived in a similar fashion for the discrete ordinates transport problem.
The spectral analysis of the transposed equation of Eq.(3) can be performed similarly as the
forward case. The result is given by

lu Tx Tk Tk
(=214 D) (1m) = SgoNg (v) + 3pm B N (v), (8)



Using Eq.(5) and Eq.(8) gives the following bi-orthogonality :

N
Z W pbm < ¢:ﬁ (Nm)a ¢Va (Nm) >= MVa 5aﬁa (9)

m=1

where 0,4 is the Kronecker’s delta, < - > means the dot product.

I1.2. Infinite Medium Green’s Function (IMGF)

An infinite homogeneous medium having a unit source at origin, emitting in the direction
of p, and with a particular energy of g, is considered. The solution of this infinite medium
problem is called the infinite medium Green’s function G (0, ip; x, o). The problem is
described as follows :

N
d . .
(NmI% + B)G% (0, pip; 7, i) = so anGgp(Oameaﬂn)
n=1
N (10)
+ 3pmYis1 Z wnﬂnégp (0, pap3 T, pan) + 6 (pm — Np)(s(x)ggpa

n=1

where the vector ggp has only one non-zero component that is unity in the g,’th component,

N
and the (e, —pp) is defined to satisfy Z WO (b, —pip) = 1, and the vector Green’s function

m=1
is defined as
G 1(0, pps @, fim)
Ggp_>2(0, Npa T, N’m)
G (0, pip; 2, i) = | G973(0, a3 2, fim) (11)

In Eq.(11), G979(0, pup; @, ) represents the angular flux at z for direction u, of energy
group g due to the unit source at origin for direction p, of energy group gp.

While the solution must satisfy the homogeneous equation for position xz # 0, it must also
satisfy the following conditions. The first condition is the finite condition at infinity. The
second condition that is used to determine the expansion coefficients is the jump condition
at the source position. This condition is derived by integrating Eq.(10) over an infinitesimal
interval around the source position :

— = _ ) Pm — Mp) =
G (0, tp; 07, i) — G (0, 13 07, i) = %5% (12)
m

With these conditions and the bi-orthogonality of the eigenvectors, we obtain the following
IMGF with the unit source at x = xg :

NG/2 [ 7,
Z Mef(mﬂo)/v%’y& (tm), T > o,
é’gp(xo’up; x,um) = a=1 NG « R (13)

LS e () e
a=NG/2+1 e



where [d], represents the p’th component of a vector a.

I1.3. Computational Method

In this section, the computational method using IMGF for obtaining the analytic solu-
tions of the multigroup slab geometry discrete ordinates transport equation is derived. First,
consider a homogeneous finite slab problem with given incoming angular fluxes at boundaries:

:U‘mdd)de(w) + ZQ/_;m(J?) = ESO$($) + 3“771251951(33) + q_'m(g:)’ T € [_a,a]’

Jm(_a) = d_;%fma P > 0,
Jm(a) = Jﬁgm, pm < 0,

where a is the half thickness of the slab. We note that the above finite medium solution zﬁm(x)
can be represented in terms of an infinite medium solution [1)5°(z)] due to the Placzek’s lemma
as follows :

(14)

. o _ ]., T e [—a,a],
H*(:E)l/)m(]?) - Q/)ma H*(ff) - { 0’ ()theI'Wise,
. ﬂ ' ] (15)
i ¢§x($) + B (2) = Beod™ (@) + 3pmBs17° ()

+ Ho(2)@n(@) + P (2)[6(@ + a) = 6(z — a)], = € [~00,00],

where H,(x) is a step function. Since IMGF is available, the solution for the finite solution
can be given by

d)p, Zan/ d:Equ_)p(fEOaMn;fE,Mm)Qq,n(fEO)

qg=1n=1
G N
+ Z Z wanﬂp(_a’ Hn; T, ,U/m)ﬂnl/)q,n(_a) - Z Z wanﬂp(a, Hn; T, ,U/m)ﬂnl/)q,n(a)a
g=1n=1 g=1n=1

(16)

where the indices p and g were used to represent energy group. In Eq.(15), it must be noted
that the finite solution is equal to the infinite medium solution for z € [—a, a]. Inserting z = a
into Eq.(16) and separating the boundary angular fluxes into the incoming and outgoing parts
give

VYpm(a) = Zan/ d$qu_>p($0,Mn§aaﬂm)CIq,n(m)

g=1n=1
G N/2 G N
YN wa G (—a, i3 @ ) g = D Y WaGIP(ay ;07 ) g
g=1n=1 q=1n=N/2+1
G NJ/2
+ Z Z WGP (—a, pin; a, pim an/)gf;n Zzw G17P(a, pn; @ aMm)/ﬁn@[)%ﬁ;,n-
¢=1n=N/2+1 g=1n=1

(17)



Multiplying Eq.(17) with ,um[qg’,ja (m)]p and summing over m and p lead to

N

Z Win o < nga (Hm), OUt >+ Z W pbm < Qbua (Hm), m m >
m=1 m=N/2+1
. 2% N
=e "0‘ Z Winfm < ¢ua (14m), ZLTfm > +e v Z Winfhm < ¢ua (), OUt m > (18)
m=1 m=N/2+1

a N
+/ dzge(@—0)/va Z Wy < $;a(um),cj'm(xo) > a=1,2,--- ,NG/2,

—a m=1

where < - > means the dot product. In derving Eq.(18), the bi-orthogonality of the eigenvec-
tors was used. It must be noted that Eq.(18) can easily treat arbitrarily distributed source.

Similarly, the corresponding equation for x = —a can be derived and the two equations can
be written in the following vector form :
Agrt =By +CG, (19)

where 1/70“'5 and 1/7’” consist of the cell-edge outgoing and incoming angular fluxes for the
finite slab, respectively, and A, B and C are GN X GN matrices. The problems having
heterogeneous materials (consisting of multilayered homogeneous slabs) can be solved by an
iterative scheme on the interface angular fluxes (e.g., red-black iteration with one-node block
inversion) with the continuity of the interface angular fluxes. Finally, if all the cell-edge
angular fluxes are calculated, the analytic distribution for each homogeneous slab is easily
calculated by Eq.(16). The resulting equation for the case of uniform and isotropic source is
explicitly given by

NG/2 a
Ypm(@) = Y (U= e TG, (wn)ly YN, Toag
a=1 Vo g=1
NG/2 a
+ Z (e a)/ya v (Pom)] pz “valaty
NG/2 a Nq:1 (20)
SO, ()l Y D wattnl$, (1)l ¥L0,n
=1n=1
NG/2 '
- Z (2=a)/ve [ﬁg ve (Him, ]pzzwnﬂn "o (n)]q¥Rogm
g=1n=1

Since all derivations except the discrete ordinates approximation are analytic, Eq.(20) is the
analytic solution of the multigroup discrete ordinates transport equation in slab geometry. For
the case of general source without uniform and isotropic assumptions, the analytic solution
can be also written down but omitted here. If only region averaged scalar fluxes are required,
the use of the balance equation is more convenient than the use of Eq.(20).

ITI. Numerical Application and Results

To test our method, two two-energy group benchmark problems are considered. Problem
1 is a homogeneous slab of 100em with isotropic scattering proposed by Barros and Larsen 2.



The left side boundary condition is a predescribed incident angular flux (@l;le = 1.0, 1/)2Lym =
0.0) and the right side boundary condition is vacuum. The cross sections of the problem
are as follows : o7 = o9 = 1.0em™!, 00,151 = 0.99cm 1, 00,152 = 0.008cm 1, 00,251 =
0.005¢cm " and 00,22 = 0.98cm~!. The interior source is zero. To solve this problem, the S,
Gauss-Legendre quadrature set with a pointwise convergence criterion of 10~° is used. The nu-
merical test is performed for several mesh divisions to show that our method gives true analytic
solution. In Table I, the numerical results (i.e., scalar fluxes at & = 0.0cm, 50.0cm, 100.0cm)
are compared with the diamond difference (DD) method and SGF. The results show that our
method gives the analytic solution of multigroup discrete ordinates transport equation. It
must be noted that our method used only one mesh to find all information for this problem.

Table 1: Comparison of the scalar fluxes of problem 1

Ne b SGF DD present method
z group 1 group 2 group 1 group 2 group 1 group 2
0 0.91268 0.27264E-1 0.91266 0.27271E-1 0.91268 0.27264E-1
10 50 | 0.55129E-3 | 0.33652E-3 | -0.7669E-2 | 0.32086E-2 | 0.55129E-3 | 0.33652E-3
100 | 0.62768E-7 | 0.38442E-7 | 0.15715E-2 | -0.71102E-3 | 0.62769E-7 | 0.38443E-7
0 0.91268 0.27264E-1 0.91174 0.28700E-1 0.91268 0.27264E-1
4 50 | 0.55129E-3 | 0.33652E-3 0.11765 -0.78691E-1 | 0.55129E-3 | 0.33652E-3
100 | 0.62768E-7 | 0.38442E-7 | 0.12646E-1 | -0.11929E-1 | 0.62769E-7 | 0.38443E-7
0 - - - - 0.91268 0.27264E-1
1 50 - - - - 0.55129E-3 | 0.33652E-3
100 - - - - 0.62769E-7 | 0.38443E-7

¢Number of meshes, Pposition

Second problem is a heterogeneous slab of 100cm thickness with linearly anisotropic scat-
tering. As in Figure 1, this problem consists of three regions. The leftmost region (fuel),
10.0cm thiCk, has o1 = 03, 09 = 10, 00,1-1 = 027, 00,12 = 001, 0021 = 0001, 00,22 =
0.9, 01,11 = 0.09, 01,152 = 0.002, 0121 = 0.0002, 0122 = 0.08. This has a uniform
isotropic source of ¢g; = 5.0 and g2 = 50.0. The center region (absorber), 10.0cm thick, has
o1 = 0.2, 090 =3.53, 09,11 = 0.18, 09,152 = 0.01, 0p92-1 = 0.001, 0g242 = 0.53, 01151 =
0.08, 01,152 = 0.003, 01251 = 0.0003, 0122 = 0.06. The right region (water) is divided
into two subregions differing in source strength. The left region (20cm thick) of these two
subregions has a uniform and isotropic source of ¢; = 1.0 and go = 10.0. This water re-
gion has o1 = 0.401, o9 = 1.30,00,1%1 = 0.32, 00,1-2 = 0.08, 00,21 = 0.002, 00,2—2 =
1.29, 01,11 = 0.07, 01,152 = 0.003, 01,21 = 0.0004, 01,252 = 0.2. The average scalar
fluxes in the absorber region are compared in Table 2. Our results were obtained with the Sy
Gauss-Legendre quadrature set and only three meshes corresponding to three regions. The
results show that the values of DD approach the values of the our method as the number
of meshes increases. Similar trends are also shown in Table 3 where the scalar fluxes at
the boundaries are compared. The analytic solution (scalar flux distribution) by using our
method are compared in Figures 2 and 3. These results also show that the results of DD
approach those of our method as the number of meshes increases.
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Figure 1: Configuration of problem 2

Table 2: Comparison of the average scalar fluxes in absorber region (problem 2)

Figure 2:

Number of meshes 20 50 100 200 | 3 (present method)
group 1 63.317 | 59.900 | 60.04 | 60.002 59.992
group 2 2.36 | 4.7438 | 4.536 | 4.5421 4.5419
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Figure 3: Comparison of the group 2 scalar flux distributions

Table 3: Comparison of the scalar fluxes at x = 0.0c¢m, 100.0cm (problem 2)

Ne 20 50 100 200 3 (present method)
141.477° | 138882 | 138.732 | 138.659 138.635
x=0.0" —5i5.942° | 511.348 500.602 500.342 509.229
3725364 | 7.006575-4 | 8.45497F-4 | 8.56667F-4 8.604285-4
x=100.0376601F-2 | 8.87700F-3 | 9.38618E-3 | 9.510245-3 9.55202E-3

“Number of meshes, "group 1 scalar flux, ‘group 2 scalar flux

Analytic solutions of the multigroup discrete ordinates transport equation with linearly
anisotropic scattering in slab geometry were obtained by using infinite medium Green’s func-
tion and Placzek’s lemma. The infinite medium Green’s function is analytically derived by
using the spectral analysis of the multigroup discrete oridinates transport equation and its
transposed equation. This approach leads to an exact relation in which the outgoing angular
fluxes is represented in terms of the incoming angular fluxes. After the interface angular
fluxes are calculated, the analytic solution for each slab is calculated straightforwardly with
IMGF. Therefore, in our method, the number of meshes that is equal to the number of the
homogeneous slabs is sufficient. The numerical tests show that our method gives true analytic

IV. Conclusions

solution of the multigroup discrete ordinates transport equation in slab geometry.

1. R. C. Barros and E. W. Larsen, “A Numerical Method for One-Group Slab-Geometry
Discrete Ordinates Problems with No Spatial Truncation Error,” Nucl. Sci. Eng., 104,

199(1990).

References




2. R. C. Barros and E. W. Larsen, “A Numerical Method for Multigroup Slab Geometry
Discrete Ordinates Problems with No Spatial Truncation Error,” Transp. Th. and Stat.
Physics, 20, 441(1991).

3. M. T. Vilhena and L. B. Barichello, “An Analytic Solution for the Multigroup Slab Ge-
ometry Discrete Ordinates Problems,” Transp. Th. and Stat. Physics, 24, 1337(1995).

4. S. G. Hong and N. Z. Cho, “An Analytic Solution Method for Discrete Ordinates Trans-
port Equations in Slab Geometry with No Spatial Truncation Error,” Accepted for
publication in Transactions of the American Nuclear Society, November 1999.

5. K. M. Case, F. De Hoffmann, and G. Placzek, Introduction to Neutron Diffusion, LASL
Report, Los Alamos Scientific Lab. (1953).

6. K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley, New York
(1967).

7. C. E. Siewart and P. Benoist, “The Fy Method in Neutron-Transport Theory. Part I :
Theory and Applications,” Nucl. Sci. Eng., 69, 156(1979).

8. P. Benoist, A. Kharchaf and R. Sanchez, “Multigroup Cny Method-I. Half-Space Albedo
Problem,” Ann. Nucl. Energy, 23, 1033(1996).

9. B. D. Ganapol and D. K. Parsons, “A Heterogeneous Analytical Benchmark for Particle
Transport Methods Development,” Trans. Am. Nucl. Soc., 80, 113(1999).

10. B. D. Ganapol and D. E. Kornreich, “The Green’s Function Method for the Monoen-
ergetic Transport Equation with Forward/Backward/Isotropic Scattering,” Ann. Nucl.
Energy, 23, 301(1996).

11. R. Sanchez and N. J. McCormick, “A Review of Neutron Transport Approximations,”
Nucl. Sci. Eng., 80, 481(1982).

12. P. Silvennoinen and P. F. Zweifel, “On Multigroup Transport Theory with a Degenerate
Transfer Kernel,” J. Math. Phys., 13, 1114(1972).



	분과별 논제 및 발표자

