1999

NEM

.

가

An Performance test of Core-Reflector Boundary Conditions on Transient Non-Linear Coarse Mesh Finite Different Method Based on the NEM

103-16

56-1

Nodal Expansion Method (NEM), Analytic Nodal Method(ANM)

	. NEM										
	-		-								
			Nuclear Energy	Agency	Nuclear	Science					
Committee	Fast Transient	6	Slow Transient	3							
				65%							
	-		가								
		-		가							

ABSTRACT

Recently an algorithm for non-linear coarse mesh finite difference method (CMFD) coupled with that the core-reflector boundary models with a transverse leakage approximation (BCMTL) was set up and successfully demonstrated its capabilities by applying to loading pattern scooping code. In this paper, the performance of BCMTLs, analytic model and polynomial expansion model, on transient non-linear CMFD was investigated for total nine of fast and slow transient problems designed by NEACRP. The numerical results show that the average reduction of CPU time was up to ~65% compared to NEM with explicit reflector model , and analytic BCMTL shows better results than polynomial expansion model does. From these results, we concluded that the BCMTLs work well and may be used as good tools for LWR core transient analysis.

1.

1980 가 (Non-linear Coarse Mesh Finite Difference Method, CMFD) [1,2,3] 가 . 50% [3] . CMFD , 1 (Fine Mesh FDM) albedo 가 가 가 albedo · , (1994), (1995) albedo (Nodal Expansion Method, NEM) 가 ^[4,5] (Core-Reflector Boundary Condition Model with a Transverse Leakage Approximation) .

. , [6] 가 가) NEM (NEACRP(Nuclear Energy Agency Nuclear Science Committee) 3 [7,8] CMFD 2 BCMTL CMFD 3 9 ,

2.

 $\mathbf{J}_{ur}^{M}(t) = \mathbf{\underline{R}}(t)\mathbf{f}_{br}^{M}(t) + \mathbf{\underline{P}}(t)\mathbf{L}_{ur}^{M}(t) + \mathbf{\underline{Q}}(t)\mathbf{J}_{vr}^{M}(t)$ (1) $\mathbf{\underline{R}}, \mathbf{\underline{Q}}, \mathbf{\underline{P}} \quad 2\times 2$

(1) .

.

·

, 4

.

$$-2\mathbf{b}_{u}\left(\mathbf{C}_{1u}^{M}(t) - 3\mathbf{C}_{2u}^{M}(t) - 3\mathbf{C}_{3u}^{M}(t) - 3\mathbf{C}_{4u}^{M}(t)\right)$$

$$= \underline{\mathbf{R}}(t)\left(\overline{\mathbf{f}}(t) + \mathbf{C}_{1u}^{M}(t) - \mathbf{C}_{2u}^{M}\right) + \underline{\mathbf{P}}(t)\mathbf{L}_{ur}^{M}(t) + \underline{\mathbf{Q}}(t)\mathbf{J}_{vr}^{M}(t)$$

(2)
$$(2)$$
$$C_{2}, C_{4}$$

(2)

NEM , *C*₁ *C*₃ 가

$$\mathbf{C}_{1u}^{M} = \left(\underline{\mathbf{R}} + 2\underline{\mathbf{X}}_{11u}\right)^{-1} \left(2\mathbf{Z}_{u} + 6\mathbf{b}_{u}\mathbf{S}_{ou} - \underline{\mathbf{R}}\left(\overline{\mathbf{f}} - \mathbf{C}_{2u}^{M}\right) - \underline{\mathbf{P}} \cdot \mathbf{L}_{ur}^{M} - \underline{\mathbf{Q}} \cdot \mathbf{J}_{vr}^{M}\right)$$
(3)

$$2x2 \quad \underline{X}_{11u} \qquad \overline{Z}_{r} \quad \underline{S}_{ou}$$

CMFD

.

$$\mathbf{J}_{ur}^{M} = -\frac{2}{a_{u}} \left[\underline{\underline{\mathbf{D}}}^{M} \left(\mathbf{f}_{b} - \overline{\mathbf{f}}^{M} \right) + \underline{\underline{\widetilde{\mathbf{D}}}}^{M} \left(\mathbf{f}_{b} + \overline{\mathbf{f}}^{M} \right) \right]$$
(4)

.

가

 C_1

,

$$\mathbf{J}_{w}^{M}(t) = \left[\underbrace{\mathbf{R}}_{w}(t) + \begin{pmatrix} \phi_{w,1}^{-1,M} & \mathbf{0} \\ \mathbf{0} & \phi_{w,2}^{-1,M} \end{pmatrix} \underbrace{\mathbf{P}}_{w}(t) \mathbf{L}_{w}^{M}(t) + \underbrace{\mathbf{Q}}_{vr}(t) \mathbf{J}_{vr}^{M}(t) \right] \mathbf{f}_{b}^{M}(t) = \underbrace{\mathbf{S}}_{w}(t) \mathbf{f}_{b}^{M}(t)$$
(5)
(5) (4) CMFD -
(4), (5)

$$\mathbf{J}_{ur}^{M}(t) = \left(\underline{\mathbf{I}} - \underline{\underline{\mathbf{D}}}^{M+} \underline{\underline{\mathbf{W}}}^{M}\right)\underline{\underline{\mathbf{D}}}^{M-} \overline{\mathbf{f}}^{M}$$
(6)

$$\underline{D}^{M_{+}}, \ \underline{W}^{M}, \ \underline{D}^{M} 2x2$$
 , $2x2$ S

3.

.

1991		•				PWR 6	D	, BWI	R 2	가
	. PWR		Hot Zero Power	0.	1					HFP
	0.1					6	4	1/	8	

,

2		. 1997	4		7.	2 STEP	35%
	0.6				slov	v transient	. Fast
transient	가 1						
	. Fast transient			가			
				, slow trans	sient		
fast	transient				가		
slow transie	ent						
		フ	'ł .		_		
CMFD					, F	RAST-K (Re	actor Analysis
code for Ste	eady and Transier . RAST-K	nt states –	KEPRI)		C	9 NEACRF)
	가		drift flux	model	3-eq	EICE (Exte	ended Implicit
Continuous- h2o	fluid Eulerian)					steam	table
1 fas	st transient		C1		6		가
				CMFD			
60%7	7}			•			가
	Slow Transie	nt	2			3	1
'						가	
가			9		-1		. 1
slow trar	nsient A				가		
2	NEM	CMFD	1				
1. CMFD			-				
N	EM			CMI	-D	-	
ſ		71		I			
Ζ.		~1		2 가	-	INEIVI	CIVIED
3.		5	60%	68%가			
	NEM ,		ANM				
	, 7L			MSI R		-	
3	. OFF-	LINE		RAST-K	I		-
-	,						

1. Han Gyu Joo, Guobing Jiag and Thomas J. Downar, "Stabilization Techniques for the Nonlinear Analytic Nodal Method," *Nucl. Sci. Eng.*, **130** (1998)

2. K. S. Smith, "Nodal Storage Reduction by Nonlinear Iteration," Trans. Am. Nucl. Vol. 44, 265 (1983)

•

3. K. S. Smith, A. F. Henry, and R. A. Loretz, "The Determination of Homogenized Diffusion Theory Parameters for Coarse-Mesh Nodal Analysis," *Proc. Adv. Reactor Physics and Shielding*, Sun Valley, Idaho (1980)

- 4. Hyung Gook Joo, et. al., "A New Approach to Core-Reflector Boundary Conditions for Nodal Reactor Calculations," *Nucl. Sci. Eng.*, **116**, 300 (1994).
- 5. E. K. Lee, C. H. Kim, and H. K. Joo, "New Core-Reflector Boundary Conditions for Transient Nodal Reactor Calculations," *Nucl. Sci. Eng*, **121**, 114 (1995)
- 6. C. H. Kim, E. K. Lee and S. M. Bae, "Coarse Mesh Finite Difference Computation with Replacement of Reflectors by Core-Reflector Boundary Conditions," *Proc. Int. Conf. On Phys. Nucl. Sci. and Tech.*, 2, pp 1213-1219, Long Island, NY, USA, Oct. (1998)
- 7. R. Fraikin and H. Finnemman, "NEACRP 3-D LWR Core Transient Benchmark Final Specifications," NEACRP-L-335, Oct. (1991)
- 8. R. Fraikin, "PWR Benchmark on Uncontrolled Withdrawal of Control Rods at Zero Power," NEA/NSC/DOC(96)20, Sep. (1997)

9.

,"

)," TR.97NJ22.J1999.205,

, May (1995)

10. PROPATH GROUP, "PROPATH: A program Package for Thermophysical Properties," Version 5.1, June (1998)

(

1. SLOW TRANSIENT CASE A

2. SLOW TRANSIENT CASE D

FA	ST TRANSIENT(HZP)	i			CASE A1				CASE C1							
	Parameters	REF.*	NEM-E	CMFD-E	. NEM-BA	CMFD- BA	NEM-BB	CMFD- BB	REF.*	NEM-E	CMFD-E	NEM-BA	CMFD- BA	NEM-BB	CMFD- BB	
Steady	C. S. B.(PPM)	567.7	566.1	566.1	567.1	567.1	565	565	1135.3	, 1140.1	1140.1	1141.5	1141.5	1133.7	1133.7	
state	3D Nodal Peak(Fq)	2.874	2.845	2.844	2.833	2.832	2.86	2.859	2.187	2.173	, 2.173	2.172	2.171	2.183	2.183	
	Radial Peak(Fxy)	1 -'	1.892	1.892	1.885	1.884	1.902	1.902	-	1.437	1.437	1.436	1.436	1.443	1.443	
	ASI	I'	0.0121	0.0122	0.0121	0.0122	0.0122	0.00122	'	0.00556	0.00568	0.00554	0.00567	0.0057	0.0057	
Transient	Peak Time(sec)	0.56	0.636	0.639	0.675	0.675	0.601	0.604	0.27	0.265	0.266	0.262	0.262	0.265	0.267	
	Peak Power	1.179	0.9124	0.9084	0.8145	0.8102	1.0327	1.0271	4.773	4.9681	4.9342	5.0822	5.059	4.773	4.753	
	Nodal Peaking Factor(Fq)	-	5.177	5.177	5.154	5.154	5.202	5.202	-	7.363	7.358	7.388	7.386	7.426	7.423	
	Avg. Doppler Temp. a Peak	-	294.52	294.53	294.44	294.43	294.97	294.98	-	301.5	301.7	301.1	301.2	299.6	299.6	
t=5.0sec	Power	0.196	0.197	0.197	0.196	0.196	0.198	0.198	0.146	0.151	0.151	0.152	0.152	0.152	0.151	
1	Nodal Peaking Factor(Fq)	1 -'	4.777	4.777	4.759	4.759	4.801	4.801	-	6.04	6.04	6.046	6.046	6.043	6.043	
	Max. Centerline Temp	673.3	669.1	669.2	663	663	675.9	676	676.1	697.6	697.5	699.9	699.9	696.3	696.3	
1	Doppler Temp.	324.3	324.7	324.7	324.3	324.3	325.1	325.1	315.9	317.6	, 317.6	317.7	317.8	317.5	317.5	
1	Moderator Temp.	293.1	293.1	293.1	293	293	293	293.2	291.5	291.8	, 291.8	291.8	291.8	291.8	291.8	
	Water Density(kg/cm ³)	l'	740.3	740.3	740.5	740.5	740.2	740.2		742.8	, 742.8	742.8	742.8	742.8	742	
CPU	Steady State(N + TH)	'	4.6	1.8	4.1	1.1	3.9	'	-	40.9	13.6	30.3	8.01	30.2	8.15	
1	Neutronic(Total)	1 -'	239	106.5) 187.7	86.03	189.2	. 84.5	-	1960.7	1137.6	1454.5	815.9	1463.3	838.9	
I	Others(Total)	l'	1202.3	1204.3	1207.5	1264.4	1218	1297.1	'	8156.7	8186.7	8169.8	8199.5	8324.9	8210	
CPU Time	Ratio (Neutronic)	i	1	0.45	0.79	0.36	0.79	0.35		1	0.58	0.74	0.42	0.77	0.43	

TABLE 1. HZP FAST TRASIENT

* Ref. = Results of 4 Node/Assembly Calculations by PANTHER Code [H.Finnemann, H.Bauer, A.Galati and R. Martinelli, "Results of LWR Core Transient Benchmark," NEA/NSC/DOC(93)25 (Oct. 1993)]

NEM-E: NEM + EXPLICIT REFLECTOR CMFD-E: CMFD+EXPLICIT REFLECTOR NEM-BA: NEM + POLYNOMIAL EXPANSION BCMTL CMFD-BA: CMFD + POLYNOMIAL EXPANSION BCMTL NEM-BB: NEM + ANALYTIC BCMTL CMFD-BB: CMFD+ANALYTIC BCMTL

SLO	W TRANSEINTS(HZP)				CASE A			CASE D							
	Parameters	REF.	NEM-E	CMFD-E	NEM-BA	CMFD- BA	NEM-BB	CMFD- BB	REF.	NEM-E	CMFD-E	NEM-BA	CMFD- BA	NEM-BB	CMFD- BB
Steady	C. S. B.(PPM)	1268	1273.8	1273.8	1275	1275	1267.4	1267.4	793.6	797.6	797.6	798.4	798.4	798.4	796.15
state	3D Nodal Peak(Fq)	1.88	1.856	1.855	1.856	1.856	1.866	1.866	2.886	2.862	2.861	2.857	2.856	2.857	2.856
	Radial Peak(Fxy)	1.242	1.226	1.226	1.227	1.227	1.234	1.234	1.912	1.898	1.898	1.894	1.894	1.894	1.894
	Axial Peak(Fz)	1.513	1.512	1.512	1.512	1.512	1.512	1.512	1.507	1.506	1.506	1.506	1.506	1.506	1.506
Transient	Peak Time(sec)	82.14	82.582	82.57	82.677	82.675	81.94	81.95	39.4	38.760	38.757	38.669	38.650	38.67	38.653
	Peak Power	0.356	0.3562	0.3561	0.3562	0.3561	0.3563	0.3563	0.9685	1.1017	1.0735	1.1075	1.0830	1.1075	1.083
	Nodal Peaking Factor(Fq)	2.395	2.373	2.373	2.372	2.372	2.387	2.387	3.718	3.687	3.685	3.678	3.682	3.678	3.667
	Doppler Temp. at Peak	-	298.7	298.7	298.7	298.7	298.7	298.7	-	296.4	296.6	296.8	296.0	296.8	296
	Max. Fuel Doppler Temp.	358.7	358.7	358.7	358.7	358.7	358.6	358.6	312.6	314.8	314.7	314.9	314.9	31.9	314.9
	Max.Coolant Outlet Temp.	295.3	298.9	298.9	298.9	298.9	298.7	298.7	290.0	292.0	292.0	292.0	292.0	292	292
	Max.Fuel.CenterLine Temp.	-	625.7	625.6	665.5	625.5	626.9	626.9	-	463.2	462.9	463.8	463.4	463.8	463.4
CPU	Steady State(N + TH)	-	4.55	1.5	4	1.16	3.9	1.1		4.75	1.55	4.01	1.07	4.01	1.15
	Neutronic	-	936.4	591.4	757.4	475.8	754	473.7		800	440.2	620.6	345.6	624.4	344.9
	Others	-	4038.1	4046.2	4207.3	4721.3	4170	4162.4		2590.2	2595.8	2618.3	2643.4	2628.6	2611.7
CPU Time	Ratio (Neutronic)	-	1	0.63	0.81	0.51	0.81	0.51		1.00	0.55	0.78	0.43	0.78	0.43

TABLE 2. HZP SLOW TRASIENT

* REF. = Results of 4 Node/Assembly Calculations by PANTHER Code [Ref. 8]