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Abstract
The 3D neutronics code is the ultimate means of achieving high fidelity in the

neutronic simulation of the reactor core, nevertheless the 1D neutronics model is
needed to replace 3D model in many practical circumstances.

In this paper a 3D consistent 1D model based on nonlinear analytic nodal method is
developed. During the derivation, the current conservation factor (CCF) is introduced
which guarantees the same axial neutron currents obtained from the 1D equation as the
3D reference values.

To test the 1D model with CCF, three cases of steady state calculation were
performed and compared with 3D reference values. The errors of K-eff values were
reduced about one tenth when using CCF. And the errors of power distribution were
decreased to the range of one fifth or tenth at steady state calculation.

With the planar averaged group constants and the CCF’s introduced in this paper, it
becomes possible to reproduce the 3D reference solution from the 1D model. Thus the
1D model with CCF can provide the preciser results at the steady state, and it is
expected that the slow transient such as the day range xenon dynamics can be simulated
more accurately with 1D model.

I.  Introduction
The 3D neutronics code is the ultimate means of achieving high fidelity in the

neutronic simulation of the reactor core, nevertheless the 1D neutronics model is
needed to replace 3D model in many practical circumstances. The needs are two folds;
1) the significant reduction in computing time and 2) the circumventing the lack of
detailed neutronic data for 3D model. When the core characteristic parameters are
predominant in the axial direction and the radial flux shape has negligible effects on the
global behavior such as the cases of uncontrolled bank withdrawal, xenon transient,



BWR flow instability etc, the 1D model can be useful.
In the case that a 3D model is available and a 1D modeling is desired for execution

time, it should be possible to generate the 1D model through a consistent radial
collapsing procedure. The 1D model obtained as such can then reproduce exactly the
3D results at least at the reference conditions on which the 1D model is based on.
However, this is possible only when the steady state and transient solution methods of
the 1D kinetics module are consistent with the base 3D kinetics module.

In this paper a new correction factor in a 1D model is proposed that makes the 1D
model consistent with the nonlinear analytic nodal 3D model[1]. In the following
sections the correction factor called current conservation factor (CCF) is derived for the
1D model consistent with 3D model. CCF is generated at the same time when the
planar 1D cross sections are collapsed through the base 3D code and tested for three
kinds of steady state cases and a fast transient problem.

II.  Derivation of One-Dimensional Kinetics Solution Method
The 1D kinetics equation can be derived by integrating the 3D time-dependent

neutron diffusion equation over the radial domain. The solution of the 1D kinetics
equation is relatively simple because it involves only a block tridiagonal linear system
which can be solved directly by the Gaussian elimination scheme. In order to retain
good spatial solution accuracy, the nonlinear analytic nodal method (ANM)
implemented in the 3D code PARCS[1] is used in the 1D solver. The 1D kinetics
equation is derived rigorously and planar averaged group constants are defined. During
the derivation, CCF is introduced which guarantees the same axial neutron currents to
be obtained from the 1D equation as the 3D reference values. With the planar averaged
group constants and CCF’s, it becomes possible to reproduce the 3D reference solution
from the 1D model. In order to obtain planar cross sections as functions of state
parameters such as fuel temperature, moderator density and boron centration, a
generalized tabular cross section representation schemes is considered. The detailed
solution methods for the eigenvalue and the transient fixed source problems as well as
the temporal discretization methods are omitted here since they are already documented
well in the reference [1].

II.A  Derivation of One-Dimensional Kinetics Equation
The 3D time-dependent two-group neutron diffusion equation in Cartesian

coordinate reads:
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Before integrating Eq. (1) over the radial domain, we factorize the flux into two

independent functions, which are defined as the 1D flux (ϕ) and radial shape function

(Φ), respectively, as the following:

),,,(),(),,,( tzyxtztzyx ggg Φ= ϕφ . (4)

Integration of the left hand side (LHS) of Eq. (1) can then be performed using the
factorized flux:
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In the above derivation, it was assumed that the neutron velocities are time-independent.
Since Eq. (4) is an arbitrary factorization, it is possible to impose a constraint on the
radial shape function to make the factorization unique. The constraint is chosen such
that Eq. (5) can be simplified. Namely,
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where A is the area of the radial domain. The second term on the right hand side(RHS)
in Eq. (5) vanishes because the integral term is constant over time and the LHS term
reduces to:
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The integration of the removal term on the RHS of  Eq. (1) becomes:
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where the planar averaged removal cross section is defined as:
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The other types of planar averaged cross sections appearing in the source terms ( gQ )



can be defined similarly.
The integration of the radial leakage term is simplified by the Gauss theorem as:
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where  LgΣ is the leakage cross section defined as:
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The integration of the axial leakage term proceeds first by decomposing the axial
current term as:
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The integration now yields:
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The first term in the RHS of Eq. (13) can be simplified by introducing the planar
averaged diffusion coefficient defined as:

∫ Φ≡ dAD
A

D ggg

1
. (14)

The second term is, however, not easy to simplify. This term would be zero if 0=
∂
Φ∂
z

g ,

namely, the radial flux shape is uniform over the axial direction, which is not the normal
case. By keeping this term explicitly by the following definition of shape dependent
current:
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Eq. (13) reduces to:
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By using Eq. (7), Eq. (8), Eq. (10), and Eq. (16), the 1D kinetics equation is now
obtained as follows (after removing A from both sides):
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where the effective removal cross section, rgΣ̂ , is defined as follows by adding the

radial leakage cross section:

Lgrgrg Σ+Σ≡Σ̂ (19)

and the total axial current, gĴ , combines both components of the current, i.e. :

ggg JJJ
~ˆ +≡ . (20)

When a flux distribution is available from a reference 3D calculation, the planar
averaged group constants can be obtained by evaluating Eq. (6), Eq. (9), Eq. (11) and

Eq. (14) for each plane. If the current due to the difference in the radial shape ( gJ
~

),

which are small compared to the current due to the difference in the 1D flux ( gJ ), is

neglected, then Eq. (18) can be solved for the 1D flux, gϕ . In such case, however, it is

not possible to reproduce exactly the 3D base values of the eigenvalue and the axial flux
distribution in the 1D calculation.

A problem arises when gJ
~

 is explicitly considered. Since this term does not contain

the derivative of the 1D flux as identified in Eq. (15), inclusion of this term makes

Eq. (18) no longer a diffusion equation. Moreover, since this term involves 
z

g

∂
Φ∂

which

can not be evaluated in normal 3D nodal calculations, defining a collapsed group
constant for the integral in Eq. (15) is not possible. In order to overcome this problem in
the framework of the nonlinear nodal method, the concept of flux discontinuity is

introduced here such that the total axial current ( gĴ ) determined in a 3D reference

calculation is conserved in the 1D nodal calculation. With the discontinuity factor
whose definition is detailed in the next section, it now becomes possible to reproduce
exactly the 3D results in the 1D calculation at least at the reference condition and the
1D model can then be applied to other perturbed states.

II.B  Two-Node Problem to Determine Current Conservation Factor
Suppose two neighboring planes for which the planar averaged group constant,

fluxes, and interface currents were obtained from a 3D nodal calculation. For these two



planes, it is possible to formulate a two-node problem to determine the nodal coupling
relation which is used to represent the interface current in terms of two node (or planar)
averaged fluxes as:
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where the superscripts t and b stand for top and bottom node of the two nodes,

respectively and gD
~

 means the base nodal coupling coefficients based on finite

difference approximation. In normal two-node problem, the interface current as well as

the correctional nodal coupling coefficient (CNCC), gD̂ , is the free parameter to be

determined from the two-node nodal calculation. In order to solve the normal two-node
problem, four constraints are imposed per group. They are two node average fluxes and
flux and current continuity at the interface. In a two-node problem, however, the
interface current is not a free parameter, rather it is considered as an additional con-
straint.

The two-group ANM solution for a node is given by the following (refer to Section
4.2 of the reference [1] for the details of the derivation of the ANM solution):
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In the above equation, the c coefficients are determined by the transverse leakage
and/or the transient fixed source, which are zero in the 1D steady-state case. The basis
functions above are represented concisely in terms of two generic functions defined
below and here the first argument, m, signifies the mode of buckling.:
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In a two-node problem, there are then eight coefficients (2*4 a ‘s) to be determined.
In order to determine them uniquely, the eight constraint conditions must be specified
and two of them are the flux continuity condition for two groups which reads (the
others are four node-average flux constraints - 2 nodes x 2 groups - and two current
continuity conditions - 2 groups):







−=





22

t
zt

g
t
g

b
zb

g
b
g

hh
ϕζϕζ (25)



where gζ  is the discontinuity factor that is assumed to be known in normal two-node

calculations.
If the two interface currents (one for each group) are added as the additiona l

condition in the two-node problem, then two additional unknowns should be introduced.
For this purpose, it is possible to represent the discontinuity factors as follows:

g
t
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b
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and to take gε , which is called as CCF , as the additional unknown for each group. The

ten unknowns can then be simultaneously determined by imposing the ten constraints.
The homogeneous solution for the two node problem (note that in the 1D steady-

state problem, there is no particular solution because the transverse leakage is zero) can
be represented as follows in terms of the several basis functions which differs

depending on the magnitude of ∞k :
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In a two-node problem, the homogeneous solution can be compactly represented as:
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The total 10 unknowns composed of 8 coefficients of the two nodes and 2 CCF’s
can be solved with the following constraints:

1) node average fluxes conservation:
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2) surface average current conservation at the interface:

2/

2/
3

)()(

)()()(

t

b

hz

t
g

t
g

hz

b
g

b
g

D
g

z
dz
d

zD

z
dz
d

zDzJ

−=

=

−=

−=

ϕ

ϕ
. (30)

3) flux continuity using CCF factors at the interface:
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Note that there are additional constraints in Eq. (30) which requires the current
determined in the two node problem be the same as the average current obtained from
the reference 3D calculation. The above constraints constitute 10 equations that can be
solved for 10 unknowns.



The final solution form should be different depending on the basis function which
is determined by the node properties. Here, the solution is provided only for the case

that the base functions are sin(z) and cos(z) corresponding to m=0, ∞kλ >1. The eight

coefficients determined from the simultaneous solution of the 10 equations are as
follows:
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The final expression for CCF is then obtained follows:
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III  Test Problems
CCF values derived in the previous section are generated when the 1D cross section

set is prepared with planar collapsed cross section. And they are used when solving the
intra nodal flux distribution in a two node problem kernel of 1D model.

In order to test the effect of CCF, three kinds of steady state calculations and a fast
transient problem are performed. The test core is based on NEACRP benchmark
problem. The axial flux(power) distribution is mainly distorted by the control rod
insertion, so the test cases are selected as case 1; all rod out case, case 2; rods inserted
half to the active core height and case 3; several rods are inserted sequentially. And the
NEACRP benchmark A1 problem[4] that simulates the fast core transients due to a



central rod ejection.

IV  Results and Conclusion
Table 1 shows the CCF values obtained from the three test cases. Table 2 shows the

results of K-eff values compared with the 3D reference value when the CCF is used and
not used. The errors of K-eff values are reduced about one tenth when using CCF.
Tables 3 and 4 show the comparison results of peak power and peripheral power. The
axial power distribution from 1D calculation agrees well to that of 3D reference value
as shown in Figure 1. The errors of power are decreased to the range of one fifth or
tenth in the case using CCF. However as shown in Figure 2, CCF doest not effect much
on the overall core behavior result in a case of fast transient such as a rod ejection.
Because the major factor determining the core behavior in a fast rod ejection problem
initiated from a heavily rodded condition is the total rod worth involving a transient.
With the planar averaged group constants and CCF’s, it becomes possible to reproduce
the 3D reference solution from the 1D model. Thus the 1D model with CCF can
provide the preciser results at the steady state, and it is expected that the slow transient
such as the day range xenon dynamics can be simulated more accurately with 1D model.
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Table 1. Sample of CCF values
Case-1 Case-2 Case-3Node

No. CCF-1 CCF-2 CCF-1 CCF-2 CCF-1 CCF-2

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

 3.922047E-02
 1.402784E-03
 6.207732E-04
 7.097761E-04
 4.847944E-04
 2.859150E-04
 1.689825E-04
 7.776116E-05
-2.420514E-06
-8.231506E-05
-1.749327E-04
-2.939006E-04
-4.968247E-04
-7.109716E-04
-6.252996E-04
-1.613005E-03
-3.987261E-02

 3.792532E-02
 1.540256E-03
 1.281259E-03
 1.247093E-03
 7.626906E-04
 4.469273E-04
 2.624045E-04
 1.208078E-04
-3.479503E-06
-1.273399E-04
-2.703663E-04
-4.556907E-04
-7.686452E-04
-1.232297E-03
-1.352798E-03
-1.334228E-03
-3.330637E-02

 3.932028E-02
 1.401115E-03
 6.067341E-04
 6.572262E-04
 3.002599E-04
 5.295197E-05
-1.926969E-04
 1.470752E-04
 2.128189E-04
-3.193745E-03
-9.997496E-03
-5.189781E-03
-7.415104E-03
-2.313249E-03
-9.782316E-04
-2.025886E-03
-4.307671E-02

 3.799754E-02
 1.526394E-03
 1.238928E-03
 1.142919E-03
 4.897273E-04
 9.835972E-05
-2.936846E-04
 3.410101E-04
 1.172492E-03
-7.698134E-03
-1.439397E-02
-8.247424E-03
-1.050758E-02
-4.181173E-03
-2.300859E-03
-3.963753E-03
-3.804341E-02

 4.095733E-02
 1.460416E-03
 6.193009E-04
 6.553792E-04
 5.145261E-05
-4.922900E-04
-5.825792E-04
-4.909438E-04
-1.158163E-03
-2.277768E-03
-2.921803E-03
-2.120458E-03
-1.097869E-03
-2.601829E-03
-1.345732E-03
-2.356987E-03
-4.868531E-02

 3.965351E-02
 1.692759E-03
 1.354002E-03
 1.406484E-03
 6.294915E-04
-3.372619E-05
-8.159370E-04
-1.378600E-03
-2.673722E-03
-3.021050E-03
-3.646835E-03
-2.667255E-03
-1.046316E-03
-5.937549E-03
-3.896898E-03
-5.068253E-03
-4.426072E-02

Table 2. Comparison of Core Eigenvalue(K-eff) at Steady State
Method Case-1 Case-2 Case-3

3D reference K-eff 1.087519 1.078697 1.075649
K-eff 1.087554 1.078791 1.0757711D without CCF

Error(pcm) * -3.5 -9.4 -12.2
K-eff 1.087522 1.078706 1.0756601D with CCF

Error(pcm) * -0.3 -0.9 -1.1

* : Error = (3D – 1D)*100000

Table 3. Comparison of Maximum Axial Power at Steady State
Method Case-1 Case-2 Case-3

3D reference Peak 1.5097(9) 2.5804(7) 2.2552(7)
Peak 1.5058(9) 2.5727(7) 2.2506(7)1D without CCF

Error(%) * -0.256 -0.300 -0.202
Peak 1.5092(9) 2.5793(7) 2.2543(7)1D with CCF

Error(%) ** -0.033 -0.046 -0.039

** : Error = (3D – 1D)/3D*100

(#) means the peak node number

Table 4. Comparison of Peripheral Node Power at Steady State
Method Case-1 Case-2 Case-3

3D reference Node Power 0.1637(2) 0.4954(2) 0.4776(2)
Node Power 0.1729(2) 0.5235(2) 0.5072(2)1D without CCF
Error(%) ** 5.591 5.657 6.202
Node Power 0.1654(2) 0.5005(2) 0.4828(2)1D with CCF
Error(%) ** 1.027 1.024 1.082



0.0 0.2 0.4 0.6 0.8 1.0

Core Relative Height

0.00

0.50

1.00

1.50

2.00

2.50

A
xi

al
 P

o
w

er 3D
1D without CCF

1D with CCF

Figure 1. Comparison of Axial Power Distribution(Case-3)

Figure 2. Comparison of Fast Transient Result for NEACRP A1 Problem
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