

ABSTRACT

Nuclear criticality analysis for DUPIC fuel fabrication facility at the normal conditions has been carried out under the assumption that UO_2 amount to be handled in the facility is 520 kg. The sensitivity analyses at the hypothetic accidental conditions have been done for the nuclear material container array, UO_2 bulk density, water concentration, enrichment, and UO_2 amount in the facility.

The result shows that the facility at the normal condition is sufficiently maintained in the subcritical condition. It is also proved that the facility is well below the critical condition when enrichment is equal to or lower than about 4.0 wt% through the sensitivity analysis for the container array and water concentration. In the hypothetical accident condition that the all nuclear materials are clustered, the maximum k_{eff} values at 3 and 5 wt% of the enrichment are much higher than the subcritical limit of 0.95. Even though burnup credit is applied, the maximum k_{eff} values of both actinide-only and actinides (14 nuclides) plus fission products (21 nuclides) are higher than 0.95. It is revealed that 520 kg can be handled in the facility under the limited condition that water concentration in the void of UO₂ material is below 0.33 and 0.23 g/cm³ for 3 and 5 wt% of the enrichment, respectively.

1.

15

21

[1] , 가 가 . 2. 가 가. 가 가 , 가 30 cm 가 1) Fig. 1 15가 Fig. 2-5 . 가 가 Table 1 가 3.2, 5.2 10.6 g/cm³ 7 (rack) 4.32 g/cm³ 가 (bulk density) / 가 가 . . Table 1 200 kg 가 520 kg 가 . , 2) 가 가 가 가 가 . 10 cm . Fig. 6 가 가 (520 kg) 가 3) 가 (k_{eff}=0.95) k_{eff}=0.95 가 1) , , $k_{eff(max)} = k_{cal} + \Delta k_{b} + \Delta k_{u}$ (1) 95 % k_{cal} , k_b . k_u , 가

.

NUREG-0800[2] ANSI8.1.83[3]

ANSI8. . [2 0.98	, 1.83 2] , 0.95	0.95 , 7 7†	가
	$K_{max} \leq 0.95$	(2)	
4. MCNP4B	MCNP4B [4]		
UO ₂ , フト 40 % M	, CNP4B	UO_2 [5]. Table 2	
· 2 7 · 10 7	35 5.0 wt%	, 가 , 4	40
Table 2	. Table 2	(talaranga limit factor) (2065)[6]	71
95 %	95 %	(toterance limit factor) (2.003)[6,	/]
мсле4в 5. 7.	0.02487	[0].	
Table 1	Fig. 1		
g/cm ³	Fig. 7 .	가	1

,

•

Fig. 6 가 5 wt% (1) . Fig. 8 . Fig. 8 가 가 가, 2 cm 가 0.95 . 가 0.6 g/cm³ 가 0.95 0.6 g/cm³ 0.001327 g/cm³ 가

.

•

.

9 가 4.0 wt% 0.95 . 가 4.0 wt% . . 5.0 wt% 1) 3.0 7 3 5 wt% UO_2 , 가 Fig. 10 11 . Fig. 10 가 2 g/cm³ . UO₂ . Fig. 11 가 3.0 wt% 1.30 1.18 . , 2) 3.5 wt% 1&2 KOFA 37240 MWd/tU 3 DUPIC 가 . SCALE4.4 SAS2H , 95 % 95 % 가 [9]. ²⁴¹Am 14 21 Fig. 12 13 0.95 가 . ¹⁴⁹Sm 103 Rh 가 . 3) UO₂ 가 Fig. 14 3.0 5.0 wt% UO_2 $2 \sim 3 \text{ g/cm}^3$. • 0.001327 g/cm³ 가 100 0.01327 g/cm^3 Fig. 15 16 . Fig. 15 . . 7 b.01327 g/cm³ Fig. 16 UO_2 3,600 kg 가 . (k_{eff}=0.95) Fig. 17 가 , . Fig. 17 36 kg . [9] . 52 Kg , 7 F 3 5 wt% 520 k∞ 32 kg 7 $0.33 \quad 0.23 \text{ g/cm}^3$ UO₂ 520 kg DUPIC •

Fig.

DUPIC

- [1] , "Development of Manufacturing Equipment and QC Equipment for DUPIC Fuel, ", KAERI/TR-1319/99, KAERI (1999).
- [2] U.S. NRC, "Standard Review Plan," NUREG-0800 (1981).
- [3] U.S. NRC, "Nuclear Criticality Safety in Operations with Fissionable Materials Outside Reactors, "ANSI-8.1.1993 (1983).
- [4] Judith F. Briesmeister, "MCNP-A General Monte Carlo N-Particle Transport Code Version 4B," LA-12625, LANL (1997).
- [5] OECD/NEA, "International Handbook of Evaluated Criticality Safety Benchmark Experiments : Highly Enriched Uranium System, NEA/NSC/DOC(95)03/III(1995).
- [6] R.E. Walpole and R.H. Myers, Probability and Statistics for Engineers and Scientists, 5th, Prentice Hall, New York (1993).
- [7] Robert E. Odeh and D. B. Owen, Table for Normal Tolerance Limits, Sampling Plans, and Screening, Marcel Dekker, Inc., New York (1980).
- [8] S. G. Ro, "Nuclear Criticality Safety Guide," KAERI/TR-861/97, KAERI (1997).
- [9] H. S. Shin, "Determination of Correction Factor for Prediction of Spent Fuel Composition," Proceedings of the Korea Nuclear Society Sprint Meeting (1999).
- [10]S. G. Ro, "Development of Advanced Spent Fuel Management Process : Criticality Safety Analysis of Integrated Mockup and Metallized Spent Fuel Storage," KAERI/TR-1250/99, KAERI (1999).

Davica	Material		Geometrical model				
Device	Status	Density	Mass (kg)	Туре	Dimension (cm)		
1. Rod-cut storage	Pellet	5.2	40	Cylinder	20(Dia.), 25(H)		
2. Slitting machine	Pellet fragment	5.2	34	Cubic	$12.5(W) \times 24.5(L) \times 21.3(H)$		
3. OREOX furnace	Powder	3.2	32	Cubic	17.76(W) × 28.76(L) × 19.5(H)		
4. Mill	Powder	3.2	3	Cubic	$9(W) \times 9(L) \times 12(H)$		
5. Roll compact	Powder	4	40	Cylinder	20(Dia.), 31.4(H)		
6. Mixer	Powder	4	40	Cylinder	20(Dia.), 31.4(H)		
7. Compaction press	Green pellet	4.32*	11	Cubic	9.5(W) × 20.2(L) × 13.5(H)		
8. Sintering furnace	Pellet	7.63**	19.8	Cubic	9.5(W) × 20.2(L) × 13.5(H)		
9. Centerless grinder	Pellet	7.63	19.8	Cubic	9.5(W) × 20.2(L) × 13.5(H)		
10. Pellet cleaner /dryer	Pellet	7.63	19.8	Cubic	9.5(W) × 20.2(L) × 13.5(H)		
11. Pellet stack adjuster	Pellet	7.63	19.8	Cubic	$9.5(W) \times 20.2(L) \times 13.5(H)$		
12. Pellet loading machine	Pellet	7.63	19.8	Cubic	$9.5(W) \times 20.2(L) \times 13.5(H)$		
13. End cap welder	Pellet	10.6	0.82	Cylinder	1.4(Dia.), 50(H)		
14. End plate welder	Pellet	5.2	20	Cylinder	10(Dia.), 50(H)		
15. Dupic bundle storage	Bundle	5.2	200	Cylinder	10(Dia.), 50(H) Cylinder : 10		
Total			520				

Table 1. Design Specification of DUPIC Fuel Fabrication Device

* Bulk Density = 0.72 x 6.0 g/cm³ (Green Pellet). ** Bulk Density = 0.72 x 10.6 g/cm³ (Sintered Pellet).

Table 2. Benchmark Calculation Results for NEA	Criticality Safety Experiments
--	--------------------------------

No	U(%) (Cadalinium	Fuel	Cluster Dimension	Experiment	Calcu	ilation	Λl_r	r.
NU	Concentration) Ty	Туре	Fuel Length (cm)	$k_{eff} \pm s$ k_{eff}		S ΔK		$\mathfrak{s}_{\Delta k}$
1	2.35	S	17 x 36 / 1.684 / 91.44	1.0000 ± 0.0039	0.98237	0.00183	-0.01763	0.00431
2	$(1.04 \pm 3.6$	Q	21 x 25		0.98656	0.00173	-0.01344	0.00427
3	g/cm^3)	U	23 x 23		0.98980	0.00220	-0.01020	0.00448
4		Α	24 x 22		0.98848	0.00177	-0.01152	0.00428
5		R	34 x 18		0.98653	0.00202	-0.01347	0.00439
6		E	23 x 22		0.98355	0.00195	-0.01645	0.00436
7			23 x 24		0.98602	0.00212	-0.01398	0.00444
8			23 x 23		0.98955	0.00173	-0.01045	0.00427
9			17 x 17, 17 x 1		0.98131	0.00179	-0.01869	0.00429
10			17 x 17		0.98344	0.00196	-0.01656	0.00436
11			17 x 17, 17 x 4		0.98471	0.00198	-0.01529	0.00437
12			17 x 17, 17 x 15		0.98309	0.00175	-0.01691	0.00427
13			17 x 17, 17 x 1		0.98383	0.00183	-0.01617	0.00431
14			7 x 17, 17 x 2		0.98190	0.00184	-0.01810	0.00431
15			17 x 17, 17 x 4		0.98277	0.00200	-0.01723	0.00438
16			17 x 17, 17 x 9		0.98267	0.00183	-0.01733	0.00431
17			17 x 17, 17 x 12		0.98207	0.00208	-0.01793	0.00442
18			17 x 17, 17 x 15		0.98439	0.00161	-0.01561	0.00422
19			17 x 17, 25 x 20		0.98391	0.00199	-0.01609	0.00438
20			17 x 20, 25 x 18		0.98203	0.00187	-0.01797	0.00433
21	4.31	S	12 x 18 / 1.892 / 92.71	0.9998 ± 0.0033	0.99298	0.00183	-0.00682	0.00377
22	(1.04 ± 3.6)	Q	14 x 15		0.99050	0.00173	-0.00930	0.00373
23	g/cm^3)	U	16 x 13		0.98942	0.00220	-0.01038	0.00397
24		Α	17 x 12		0.99113	0.00177	-0.00867	0.00374
25		R	14 x 13		0.98826	0.00202	-0.01154	0.00387
26		E	14 x 16		0.98380	0.00195	-0.01600	0.00383
27			14 x 14		0.99078	0.00212	-0.00902	0.00392
28	4.31	S	9 x 12 / 1.892 / 92.71	0.9998 ± 0.0035	0.98467	0.00173	-0.01513	0.00390
29	(1.04 ± 3.6)	Q	12 x 16		0.98438	0.00179	-0.01542	0.00393
30	g/cm^3)	U	12 x 16		0.99978	0.00196	-0.00002	0.00401
31		Α	9 x 12, 9 x 2		0.98147	0.00198	-0.01833	0.00402
32		R	9 x 12, 9 x 12		0.98161	0.00175	-0.01819	0.00391
33		E	9 x 12, 9 x 1		0.98675	0.00183	-0.01305	0.00395
34			9 x 12, 9 x 1		0.98820	0.00184	-0.01160	0.00395
35			9 x 12, 9 x 2		0.98552	0.00200	-0.01428	0.00403
36			9 x 12, 9 x 4		0.98702	0.00183	-0.01278	0.00395
37			9 x 12, 9 x 8		0.98219	0.00208	-0.01761	0.00407
38			9 x 12, 9 x 10		0.98613	0.00161	-0.01367	0.00385
39			9 x 12		0.98/15	0.00199	-0.01265	0.00403
40			9 x 10, 9 x 9		0.97945	0.00187	-0.02035	0.00397
	F 0		(No. of Rods)		1.012.50	0.00110	0.01250	0.00110
41	5.0		3939 / 0.7 / 59.7	1.0000 ± 0.0063	1.01258	0.00110	0.01258	0.00640
42		E	2124 / 0.8 / 59.7	1.0000 ± 0.0058	1.00628	0.00113	0.00628	0.00591
43			1319 / 1.4 / 59.7	1.0000 ± 0.0061	1.00664	0.00086	0.00664	0.00616
44		A	5207 / 1.3 / 59.7 1205	1.0000 ± 0.0020	0.99319	0.00109	-0.00681	0.00228
45		G	1505		0.99848	0.00114	-0.00152	0.00230
40		U N	1051 052		0.99883	0.00110	-0.00117	0.00228
47		IN	842		0.99012	0.00110	-0.00188	0.00231
40			785		1.00670	0.00113	0.00340	0.00230
+2 50			654		0.99766	0.00098	-0.00234	0.00223
50			7.00		0.77700	0.00104	-0.00234	0.00223
$\overline{\Delta k} \pm \overline{s}_{\Delta k} \qquad -0.00905 \pm 0.00766$								
	Cal. Bias 0.02487							

1. Rod - Cut Storage (Pellet)9. Centerless Grinder (Pellet)2. Slitting Machine (Pellet+Powder)10. Pellet Cleaner/Dryer (Pellet)3. OREOX Furnace (Powder)11. Pellet Stack Adjuster (Pellet)4. Mill (Powder)12. Pellet Loading Machine (Pellet)5. Roll Compactor (Granular Powder)13. End Cap Welder (Pellet)6. Mixer (Granular Powder)14. End Plate Welder (Pellet)6. Compaction Press (Green Pellet)15. Bundle Storage(Pellet)8. Sintering Furnace (Pellet).14. End Plate Vellet)

Fig. 1. Geometrical Model for DUPIC Fuel Fabrication Facility.

Fig 2. Pellet Containment in Slitting Machine.

Fig.3. OREOX Furnace.

Fig. 4. Roll Compactor and Mixer Machines.

- 1. Rod-Cut Storage (Pellet)
- Slitting Machine (Pellet Fragment)
 OREOX Furnace (Powder)
- 4. Mill (Powder)
- 5. Roll Compactor (Granular Powder)
- 6. Mixer (Granular Powder)
- 7. Compaction Press (Green Pellet)
- 8. Sintering Furnace (Pellet)

- 9. Centerless Grinder (Pellet)
- 10. Pellet Cleaner/Dryer (Pellet)
- 11. Pellet Stack Adjuster (Pellet)
- 12. Pellet Loading Machine (Pellet)
- 13. End Cap Welder (Pellet)
- 14. End Plate Welder (Pellet)
- 15. Dupic Bundle Storage (Pellet)

Fig. 7. $K_{\mbox{\tiny eff}}$ as a Function of Water Concentration at the Normal Condition.

Fig. 8. K_{eff} as a Function of Container Spacing at the Accidental Condition.

Fig. 9. K_{eff} as a Function of Enrichment at the Accidental Condition.

