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Abstract

A reconstruction method has been developed for recovering pin powers from CANDU core calculations

performed with the coarse-mesh finite-difference diffusion approximation and single-assembly lattice

calculations. The homogeneous intra-nodal distributions of group fluxes are efficiently computed using

polynomial shapes constrained to satisfy the nodal information approximated from the node-average fluxes. The

group fluxes of individual fuel pins in a heterogeneous fuel bundle are determined using these homogeneous

intra-nodal flux distributions and the form functions obtained from the single-assembly lattice calculations. The

pin powers are obtained using these pin fluxes and the pin power cross sections generated by the single-

assembly lattice calculation. The accuracy of the reconstruction schemes has been estimated by performing

benchmark calculations for partial core representation of a natural uranium CANDU reactor. The results

indicate that the reconstruction schemes are quite accurate, yielding maximum pin power errors less than ~3 %.

The main contribution to the reconstruction error is made by the errors in the node-average fluxes obtained

from the coarse-mesh finite-difference diffusion calculation; the errors due to the reconstruction schemes are

less than 1 %.

I. Introduction

In the Canada deuterium uranium (CANDU) reactor, fuel elements experience changes of linear power

during their residence in a fuel channel because of on-power refueling. The linear power change and the ramped

power of the fuel element itself are essential to determining fuel integrity parameters such as the stress corrosion

cracking failure probability. Thus it is necessary to estimate the detailed power distribution inside a fuel bundle

accurately, especially for the advanced CANDU fuels under development, including the recycled uranium, the

slightly enriched uranium, the mixed oxide, and the spent PWR fuel. These fuels are expected to have larger flux

gradients than the natural uranium fuel because of a higher discharge burnup. In addition, the irradiation test of

these advanced fuels in a research reactor also requires the intra-bundle power distribution to predict the

irradiation behavior of each fuel element. However, it is difficult to obtain the detailed pin-wise information

using the current analysis tool. This  has motivated development of a method to predict the fuel element power

distribution of a CANDU fuel bundle using information from two-dimensional lattice calculations and three-
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dimensional core calculations.

The methods used to recover detailed pin-wise information from coarse reactor representations, usually

referred to as reconstruction methods, have reached a high level of development for light water reactors[1-7] and

liquid metal reactors[8,9]. These reconstruction methods have become standard analysis tools because they

extend the usefulness of computationally efficient nodal schemes and eliminate the need to perform full-core

fine-mesh computations. All these methods intuitively assume that the detailed flux shape in an assembly can be

approximated by superposing detailed inner assembly form functions on a smoother intra-nodal shape function.

The assembly form function is derived from the single assembly calculations, and the intra-nodal flux shapes are

derived from the nodal solution consisting of nodal fluxes and surface currents. In general, the methods

developed for the reconstruction of homogeneous intra-nodal fluxes include polynomial[2,3,8] and exponential

interpolation methods[4,5], analytical methods[6], and direct solver methods based on finite-difference

techniques[7,9].

However, because the current design and analysis tool for CANDU reactors, RFSP[10], is based on a coarse-

mesh finite-difference scheme, existing reconstruction methods developed for nodal methods are not directly

applicable to CANDU reactor analysis. Here we describe techniques for reconstructing pin-wise power

distributions of a CANDU fuel bundle based on full-core diffusion calculations performed on a coarse-mesh

finite-difference scheme of the RFSP code system. The details of the reconstruction methods are described in

Sect. 2 and the results of numerical tests  are presented in Sect. 3. Finally, Section 4 concludes the paper.

II. Reconstruction Methods

Since the CANDU reactor is a thermal reactor, it is natural to use the lessons learned from the reconstruction

methods developed for light water reactors (LWRs). The reconstruction methods for LWRs can be divided into

two categories; the form function method[2,4,5] and the embedded calculation method[11]. In the CANDU fuel

bundle, however, fuel elements are arranged in a cluster form as shown in Fig. 1, rather than a regular square or

triangular array, which makes it difficult to determine the pin powers using the embedded calculation method.

Therefore, it was decided to adopt the form function method in this study.

In order to test the applicability of the form function method to reconstruct the pin power of CANDU fuel

bundles, a preliminary study was performed using the HELIOS[12] lattice analysis code. In the preliminary

study, a multi-assembly problem was constructed, which is composed of fresh and burned fuel bundles. The two-

group fluxes were calculated with HELIOS and compared to those of single assembly calculations. It was found

that the ratios of the multi-assembly fluxes to the corresponding single-assembly fluxes are smooth functions of

position. This result suggests that, for each energy group g , the detailed flux shape in a fuel bundle can be

approximated by synthesizing the single-assembly flux shape and the smoother intra-nodal shape function such

as:

),(),(ˆ),( yxHyxyx ggg ×= φφ . (1)

The single-assembly flux shape, gH , is referred to as the form function, and can be obtained as a function of

burnup in the course of generating group constants. Therefore, if the intra-nodal shape function gφ̂  can be

obtained accurately from the core calculation performed with homogenized group constants, the detailed flux



shape in a fuel bundle can be determined using Eq. (1).

In the nodal methods for LWR analysis, the homogeneous intra-nodal flux shape is generally obtained by

expanding it with predetermined functions and determining the expansion coefficients using the nodal solution

consisting of node-average fluxes and surface-average fluxes and currents. However, the RFSP code gives only

node-average fluxes because it uses a coarse-mesh finite-difference scheme. Therefore, the intra-nodal flux

shape for a node should be approximated using the node-average fluxes of neighboring nodes. In this study, in

order to simplify the derivation of the intra-nodal flux shape, we approximately determine the surface-average

fluxes and currents and the corner point fluxes using the node-average fluxes of neighboring nodes.

II.A. Approximation of Surface-average and Corner Point Values

In order to determine the surface-average fluxes and currents, the planar flux distribution is assumed to be

linear in each of the two nodes adjacent to a surface. By requiring the node-average fluxes to be reproduced and

by enforcing additional continuity conditions on the surface-average flux and net current, the surface-average

flux and current at the interface of nodes i  and 1+i  can be obtained respectively as:
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where we delete the group index g  for simplicity, and iφ , iD , and ih  represent the node-average flux,

diffusion coefficient, and mesh size (in the direction perpendicular to the interface) of node i , respectively. For

surfaces at the external boundary, similar expressions can be obtained using the boundary conditions.

The corner point fluxes are also approximated by assuming that the flux distribution is linear in each of four

nodes surrounding a corner point. The expansion coefficients are determined by requiring the node-average

fluxes to be reproduced, by enforcing additional flux continuity conditions at the interfaces and the corner point,

and by imposing a source-free condition at the corner point. Consequently, an expression for a corner flux can be

obtained as:
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where the node index i  is cyclic and iA  denotes the area of interface between node 1−i  and i . For corner

points at the external boundary, similar expressions can be obtained using the boundary conditions.

II.B. Reconstruction of Intra-nodal Flux Distribution

Using the above surface-average fluxes and currents and corner point fluxes as well as the node-average flux,

the intra-nodal group flux is approximated for every node by assuming the flux within a node is separable in the

x-y plane and axial directions. With this separability assumption, the axial flux distribution is interpolated by a



quadratic polynomial. The expansion coefficients are determined by requiring the node-average flux and the top

and bottom surface-average fluxes to be reproduced. For the x-y plane flux distribution, two combinations of the

above nodal values are employed to investigate the effects of errors introduced in the approximation of surface-

average quantities and corner point fluxes. In the first case (method I), the surface-average fluxes, the corner

point fluxes, and the node-average flux are selected to be reproduced. In the second case (method II), the

surface-average currents are additionally required to be reproduced.

If the x-y plane flux distribution ),(ˆ yxgφ  is interpolated for each group g  by a polynomial in an N -

dimensional polynomial space NF , then it can be represented as:
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where { }Nfff ,,, 21 Λ  is the basis of NF . The expansion coefficients, g
nc ,  are determined by requiring a

selected set of nodal quantities to be reproduced. For selected nodal quantities to be reproduced in NF , the

linear functionals associated with these nodal quantities should be independent in the algebraic conjugate space

of NF [13]. Therefore, it is necessary to determine the minimum degree of the polynomial and the associated

sets of basis functions with which the given nodal information can be reproduced.

For both of the above two cases, a fourth degree polynomial is required to reproduce the selected nodal

quantities. The dimension of the fourth degree polynomial is 15, and hence greater than the number of

constraints (9 for the method I and 13 for the method II). As a result, the interpolation polynomial cannot be

determined uniquely with the given constraints. In order to determine the unique interpolation polynomial for

selected nodal quantities, the subspaces of dimension equal to the number of constraints were determined so that

the associated linear functionals are independent in their conjugate spaces. Among these subspaces, in

consideration of symmetry, the biquadratic polynomial space was selected for the first case. For the second case,

the subspace composed of all the monomials of the fourth order polynomial space except for 3xy  and yx3  was

selected.

The linear functional associated with each nodal quantity can be evaluated analytically in polynomial

spaces[8]. As a result, the coefficients of basis monomials in Eq. (5) are obtained as linear combinations of

selected nodal quantities, and the interpolation polynomial is uniquely determined. That is, for a given set of

node-average flux gφ , surface-average fluxes s
giφ , corner point fluxes c

giφ , and surface-average net currents

s
giJ , the x-y plane distribution of the g -th group flux is determined as:
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where F 's are the cardinal functions[14] corresponding to individual nodal quantities. The last term in Eq. (6) is

obviously omitted in the first case, where the surface-average currents are not used.

The functional forms of cardinal functions depend on the selected nodal quantities and basis monomials. The

cardinal functions of the above two reconstruction methods are shown in Tables 1 and 2 for the coordinate

system shown in Fig. 2. The cardinal functions of each reconstruction method form a biorthonormal set for the



linear functionals corresponding to the selected nodal quantities. For example, the cardinal function avF  of the

second case yields a unity value when averaged over the node, but zero value when averaged over a surface,

when evaluated at a corner, or when its normal derivative is taken and averaged over a surface.

III. Numerical Tests

The accuracy of the above reconstruction methods has been tested by performing benchmark calculations for

partial core representations of a natural uranium CANDU reactor. For more realistic evaluation, it was decided to

generate the reference solutions with detailed collision probability calculations using the HELIOS code. Because

of the limitation of the HELIOS code to two-dimensional calculations and the excessive computational time,

however, two-dimensional calculations were performed for 3-by-3 and 6-by-6 fuel bundle problems . The burnup

distribution of the 6-by-6 fuel-bundle problem was taken from a natural uranium CANDU core, but that of the 3-

by-3 fuel-bundle problem model was arbitrarily assigned.

The reference solutions were obtained from HELIOS calculations by retaining the detailed internal structure

of individual fuel bundles. The 89-group library was used in these calculations, and the reflective boundary

condition was employed as the external boundary conditions. The form functions and homogenized group

constants were generated as a function of burnup from the HELIOS calculation for a unit cell composed of a fuel

bundle and surrounding moderator. The power cross sections of individual fuel pins were also edited to calculate

the pin powers from the reconstructed pin fluxes. Using these group constants, two-group diffusion calculations

were performed by representing each assembly by a single mesh. These calculations were performed using the

finite-difference option of the DIF3D code[15], since the RFSP code is not flexible enough to solve these small

problems.

III.A. Reconstruction Error

Using the node-average fluxes obtained from the coarse-mesh finite-difference diffusion calculation, the

homogeneous intra-nodal flux distributions were reconstructed as described in the previous section. By

evaluating these homogeneous intra-nodal flux distributions at individual fuel positions and multiplying the

resulting fluxes by the corresponding form function values, the group fluxes in each fuel element were

determined. The pin powers were obtained using these pin fluxes and the pin power cross sections generated in

the single-assembly HELIOS calculation. The reconstructed group fluxes and power of each fuel element were

compared to the reference solution.

Figure 4 shows for individual fuel bundles the maximum errors in the pin-wise group fluxes and powers

reconstructed with reconstruction method I. The maximum errors in the reconstructed fast and thermal fluxes of

the 3-by-3 fuel-bundle problem are 3.17 and 2.36 %, respectively. In the case of the 6-by-6 problem, they are

4.53 and 3.47 %, respectively. The relative error of the fast flux is greater than that of the thermal flux, but the

absolute error is greater in the thermal flux, since the thermal flux is about two times larger than the fast flux in

CANDU reactors. The maximum error in the reconstructed pin power is 2.11 % for the 3-by-3 problem, and

3.18 % for the 6-by-6 problem. The pin powers are generally overestimated in relatively more reactive fuel

bundles and underestimated in less reactive fuel bundles.

Compared to reconstruction method I, method II showed slightly larger reconstruction errors, even though



additional information (surface-average currents) was used. For example, the maximum errors in the

reconstructed fast and thermal fluxes of the 3-by-3 fuel-bundle problem were 3.33 and 2.44 %, respectively. The

maximum error in the reconstructed pin power was 2.18 %. This is due to the relatively large errors in the

surface-average currents caused by the finite-difference approximation of flux derivatives.

III.B. Individual Error Sources

The reconstruction errors shown in Fig. 3 include the errors caused by the coarse-mesh finite-difference

diffusion calculation as well as the approximations in the reconstruction procedure. In order to quantify the

individual sources of error, separate interpolation calculations were also performed using the node-average

fluxes selected from the reference solution. Using the node-average fluxes obtained from reference HELIOS

calculations, the group fluxes and powers of individual fuel pins were reconstructed as described above. These

calculations give the interpolation errors due to the reconstruction scheme itself.

Figure 5 shows the maximum interpolation errors in the pin-wise group fluxes and powers obtained with

reconstruction method I. The maximum errors in the fast and thermal fluxes of the 3-by-3 problem are 0.70 and

0.68 %, respectively. In the case of the 6-by-6 problem, they are respectively 0.74 and 0.28 %. The maximum

error in the reconstructed pin power is 0.61 % for the 3-by-3 problem, and 0.28 % for the 6-by-6 problem.

Compared to the 3-by-3 problem, the 6-by-6 problem shows relatively smaller interpolation errors, which is due

to the smoother flux distributions resulting from the relatively smoother burnup distribution. Reconstruction

method II showed slightly larger interpolation errors as in the case of the reconstruction errors. For example, the

maximum pin power error of the 3-by-3 problem was 0.80 %. This result showed that method II is inferior to

method I due to the relatively large errors in the surface-average currents.

Comparing the reconstruction and the interpolation errors, it can be found that the errors in the node-average

fluxes caused by the approximate diffusion calculation make a much larger contribution to the reconstruction

error than the errors due to the reconstruction scheme itself. These results indicate that the reconstruction

methods are quite accurate, yielding maximum errors in power and group fluxes of less than 1 %. For the 3-by-3

problem, the maximum errors in the node-average fast and thermal fluxes obtained from the coarse-mesh finite-

difference diffusion calculation were 3.00 and 2.17 %, respectively. In the case of the 6-by-6 problem, they were

as large as 3.58 and 3.25 %, respectively. The corresponding maximum errors in node-average powers were 2.03

and 3.07 % for the 3-by-3 and 6-by-6 problems, respectively. Therefore, if the accuracy of node-average fluxes

is improved, the overall reconstruction error would be reduced significantly.

The node-average fluxes obtained from the coarse-mesh finite-difference diffusion calculation contain the

errors caused by the two-group diffusion approximation, coarse-mesh finite-difference method, and group

constant generation. By introducing these approximations separately, the individual sources of error were

estimated. First of all, the error contribution attributable to the coarse-mesh finite-difference method was

estimated by refining the mesh size. As shown in Fig. 5 for the multiplication factor, the finite-difference

solution converges as the mesh size decreases. When the node-average fluxes collapsed from the converged

finite-difference solution were  used, the maximum error in the reconstructed pin powers of the 3-by-3 problem

was reduced to 1.35 % from 2.11 %, but the error was still two times larger than the interpolation error. The

error in node-average powers obtained from the converged finite-difference solution was as large as 1.34 %. In

the case of the 6-by-6 problem, the maximum error in reconstructed pin powers was reduced to 2.69 % from



3.18 %, which is about ten times larger than the interpolation error. The error in node-average powers obtained

from the converged finite-difference solution was still as large as 2.50 %.

The group constants generated from a single-assembly calculation contain the errors caused by the reflective

boundary condition used in the collision probability calculation. The error attributable to the group constants

generated from a single-assembly HELIOS calculation was estimated by repeating the two-group diffusion

calculations using the group constants collapsed from the reference solutions. As shown in Fig. 5, the converged

finite-difference solution obtained using the reference group constants reduces the error in the multiplication

factor of the 3-by-3 problem by only ~0.05 %. The error in the node-average power was reduced by a maximum

of ~0.3 % and by an average of ~0.1 %. These results indicate that the effects of group constant errors are

relatively small compared with the errors due to the two-group diffusion approximation.

Consequently, it appears that the largest contribution to the errors in the node-average fluxes are made by the

two-group diffusion approximation, followed by the coarse-mesh effect; the errors due to the group constants

generated by a single-assembly HELIOS calculation are relatively small. The errors caused by the two-group

diffusion calculation represent the combined effects of approximations in the homogenization, the group

collapsing, and the diffusion theory. Further investigation is required for isolating individual effects, and this is

left for future study.

IV. Conclusions

Techniques have been developed for the reconstruction of CANDU pin powers from core calculations

performed with the coarse-mesh finite-difference diffusion approximation and single-assembly lattice

calculations. The homogeneous intra-nodal distributions of group fluxes are efficiently computed using

polynomial shapes constrained to satisfy the node-average values and the surface-average and corner point

values approximated from the node-average fluxes of neighboring nodes. The group fluxes of individual fuel

pins in a heterogeneous fuel bundle are determined by evaluating the homogeneous intra-nodal flux distributions

at individual fuel positions and multiplying the resulting fluxes by the corresponding form function values. Then,

the pin powers are obtained using the pin fluxes and the pin power cross sections generated in the single-

assembly lattice calculation.

In order to test the accuracy of the reconstruction schemes, benchmark calculations have been performed for

partial core representations of a natural uranium CANDU reactor. The test results indicate that the reconstruction

schemes are quite accurate, yielding maximum pin power errors less than ~3 %. The main contribution to the

reconstruction error is made by the errors in the node-average fluxes obtained from the coarse-mesh finite-

difference diffusion calculation; the errors due to the reconstruction schemes are less than 1 %.

The largest contribution to the errors in the node-average fluxes appears to be made by the two-group

diffusion approximation, followed by the coarse-mesh effect and the errors due to the group constants generated

by a single-assembly lattice calculation are relatively small. The errors caused by the two-group diffusion

calculation represent combined effects of approximations in the homogenization, the group collapsing, and the

diffusion theory. Work is under way to isolate these effects and to devise a method to improve the accuracy of

the node-average fluxes.
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Table 1. Cardinal Functions of Reconstruction Method I
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Table 2. Cardinal Functions of Reconstruction Method II
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Fig. 1. 37-Element CANDU Fuel Bundle.
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Fig. 4. Maximum Interpolation Errors (%) in Pin-wise Flux and Power.



Fig. 5. Multiplication Factor Error vs. Mesh Size of 3-by-3 Problem.
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