'99 추계학술발표회 논문집
한국원자력학회

캐비넷형태 원전 기기의 동특성 분석
Evaluation of Modal Properties of Cabinet Type Instrument
of Nuclear Power Plant

조 양희, 박 형기, 조 성국

인천대학교
인천광역시 남구 도화동 177

요 약

원자력발전소에 설치되는 안전관련기기의 하나인 계측캐비넷의 세가지 서로 다른 해석모델을 작성하고, 작성된 해석모델에 대한 고유치해석 결과와 진동타 시험을 통하여 평가된 대상 기기의 동특성을 상호 비교하였다. 비교분석 결과로부터 기존 기술현장상 사용되는 해석모델 작성 방법을 이용하여 캐비넷형태의 기기에 대한 공학적으로 사용 가능한 선형저동성태의 동특성을 예측 할 수 있음을 확인하였다. 또한, 세가지 해석모델의 동특성 예측결과와 시험에 의한 동특성 분석결과를 비교 검토하고, 해석모델의 작성 방법에 따른 캐비넷형태의 기기여 대한 해석적방법의 견고성 여부 혹은 그 문제점을 검토하였다. 해석모델의 동특성 평가의 오차는 주로 해상모델의 강성 표현이 기인함을 확인하였으며, 이로부터 신뢰성 제고를 위한 모델링 작성방법의 개선방향을 제시하였 다.

ABSTRACT

The seismic qualification of safety-related equipments is usually achieved through analysis and testing. Analysis method is preferably adopted for structurally simple equipments which are easy to be mathematically modeled. However, even for relatively complex equipments, analysis method is
1. 서론

원자력발전소에서 설치되는 인건관련기기는 설치 전에 그 기기가 설계지정시 혹은 그 후에도 원래의 기능을 유지할 수 있음을 입증해 보이도록 요구하고 있다. 이와 같은 입증작업 중, “내진검증(seismic qualification)” 과정은 크게 동격해석 혹은 진동해석을 통하여 이루어진다. 상대적으로 기기형태가 달라지고 기능성보다는 구조적 건건성이 중요한 기기의 경우에는 동격해석을 통한 해석방법을 이용한 기기검증이 전반에 전기 혹은 전자계측기기와 같이 그 구조가 복잡하여 해석모델 작성성이 곤란하거나 기능성이 중요시 되는 기기에 대해서는 부득이 시험을 통한 검증이 이루어진다.

한편, 이상과 같은 두 가지 특성을 동시에 가진 기기에 대해서는 두가지 방법 즉, 해석 및 시험을 혼용하기도 한다. 즉, 기기의 전체적인 구조시스템에 대해서는 해석적 방법을 이용하여 그 내진성을 확인하는 반면, 그 기기상에 부착된 계기 및 부품에 대해서는 별도의 시험을 수행함으로써 기기 전체의 내진성을 검증하게 된다. 원전에서 대량으로 사용되는 전기 혹은 계측캐비닛이 바로 이와같은 경우에 해당된다. 즉, 전기 혹은 계측시스템을 격재하고 있는 전체 캐비닛구조는 해석적 방법에 의하여, 또 내부의 전기 및 전자 부품들의 시험에 의하여 내진검증을 수행하는 것이 일반적인 경향이다. 이 과정에서, 해석적방법에 의하여 얻어진 캐비넷의 응답에 계기 혹은 부품의 시험을 입력자료로 활용된다. 그러나, 대부분의 경우에 캐비넷의 구조적 형태가 복잡하면, 구조요소간의 연결상태가 완벽하지 못하기 때문에 해석을 위한 모델링의 방법에 따라 그 특성이 큰 차이를 보일 수 있다. 또한, 그 구조형태상 높은 지진동정수준(excitation level) 하에서의 심한 비선형 격동을 보일 수도 있다.

본 연구에서는 원자력발전소 지진계측시스템의 중앙처리장치캐비넷 (이하, ‘원전계측캐비넷’)을 대상으로 설계에서 많이 사용하는 세가지의 서로 다른 해석모델을 작성하고 각각의 모델에 대해
여 동특성행세(고유치행세)를 수행하였다. 이로부터 얻어진 결과를 시험을 통한 동특성행세결과와 상호 비교함으로써, 캐비넷형식의 기기에 대한 해석적방법의 적응성 여부 혹은 그 문제점을 확인하는 한편, 필요한 경우 신뢰성 제고를 위한 모델링 적성방법의 개선방향을 제시하고자 한다.

2. 대상기기 및 시험결과

2.1 대상기기

시험대상기기는 원가력발견소의 자진감시계통의 핵심부로서 계측자진신호의 기록 및 처리기능을 담당하고 있는 중앙처리장치를 보관하는 캐비넷이다. 이 캐비넷의 외형은 전후, 좌우, 높이의 길이가 각각 800mm, 650mm, 1530mm인 2.2mm 두께의 철판과 그 내부에 있는 철제 프레임으로 구성되어 있다. 한편, 이러한 형태의 기기는 그 특성상 구조적 건전성보다는 부품의 성능유지(functional operability)가 더욱 중요한 의미를 갖고 있다. 캐비넷의 구조는 전후의 문짝을 포함하는 외부철판과, 철판을 지지하고 있는 체널 및 염글로 만들어진 수평 및 수직보강재(내부 프레임) 및 부품설치를 위한 4개의 축 격판으로 되어 있다. 이들 구조요소들은 상호간에 응결 및 볼트로 다양하게 연결되어 있기 때문에 복잡한 비슷형 거동이 예상되며, 이에 따른 높은 감쇠력이 예상되는 구조적 특성을 갖고 있다. 이러한 구조적 특성상 재료의 비슷형거동에 의한 재료감쇠보다는 연결부 혹은 부품간의 마찰 등으로 인한 구조적 시스템감쇠의 특성에 강할 것으로 예상되는 기기이다. 이와같은 캐비넷은 설치시 볼트를 사용하여 바닥판에 고정하게 되어 있다. 그림 1과 그림 2는 대상키비넷의 외형 및 내부프레임의 구조를 나타낸 그림이다.

그림 2 시험대상 캐비넷의 내부프레임
본 연구에서는 대상체비넷에 대하여 별도로 수행된 동특성분석시험의 결과를 동특성 해석모델 및 결과분석을 위한 기준자료(baseline data)로 사용하였다. 이와 같은 동특성분석시험은 한국기계연구소의 대형 6- 자유도 진동대를 사용하여 수행되었다. 이 시험의 입력운동으로서는 1～40 Hz의 진동주파수를 갖는 광대역 입력운동을 사용하였으며, 시험시 입력운동 및 응답의 계측을 위하여 총 16개의 각종 계측기를 설치하였다. 시험은 세 각각방향(그림 2 참조)에 대하여 독립적으로 수행되었으며, 각 방향별로 입력운동의 크기에 따른 기기의 동특성 변화 및 비선형거동의 영향을 확인할 수 있도록 그 크기를 최하 0.2g에서 최고 1.2g까지 0.2g 단차를 가지고 증가시켜 가면서 총 6회의 실험을 반복하였다. 이와 같이 수행된 시험의 결과는 총 720개의 시간이력 파일로 기록, 보관 되었다. 이 시간이력자료는 우선 진동수 영역의 전달함수로 변환한 다음, 식(1)로 표현되는 다항식곡선 회귀기법(polyoninal curvefitting technique)을 적용하여 주요 동특성을 도출하였다.

\[
H_k(i\omega) = \frac{r_k}{\omega^2 + \omega_0^2 + i\eta \omega} + A_0 + A_1(i\omega) + A_2(-i\omega^2)
\]

여기서, \(H_k(i\omega)\) : 힘수축성에서 선택된 \(k\)번째 모드의 전달함수
\(\omega_k, \sigma_k, r_k(=r_{k1}+ir_{k2})\) : 각각 \(k\)번째 모드의 진동수, 감쇠 및 테지류
\(A_0, A_1, A_2\) : 국선회귀과정에서 사용된 레지듀합수계수
이와 같이 도출된 기기의 대표적인 동특성을 표 1과 그림 3에 요약 정리하였다.

<table>
<thead>
<tr>
<th>입력운동수준</th>
<th>0.2 g</th>
<th>1.0 g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X-방향</td>
<td>Y-방향</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>모드번호</td>
<td></td>
<td></td>
</tr>
<tr>
<td>고유진동수(Hz)</td>
<td>15.69</td>
<td>36.01</td>
</tr>
<tr>
<td>감쇠비(%)</td>
<td>11.82</td>
<td>1.43</td>
</tr>
</tbody>
</table>

(가) X - 방향(좌-우) (나) Y - 방향(전-후)

그림 3 시험에 의한 동특성분석결과로부터 구한 대표적인 고유모드 (0.2g 입력운동)
3. 해석모델 작성

3.1 개요

본 연구에서는 대상기기에 대하여 현재 실무에서 일반적으로 사용하고 있는 모델링방법에 따라 3가지의 서로 다른 해석모델 즉, 집중절량 보요소모델, 프레임모델 및 유한요소모델을 작성하였다. 등가보요소와 프레임모델은 상대적으로 경축도가 떨어지만 실무에서는 자주 이용되고 있는 모델이며, 유한요소모델은 비교적 실제와 가깝게 모델링이 가능하여 시험차와 근사한 결과를 줄 것으로 예상된다.

모델링과정에서 요구되는 각 부재의 크기 및 두께, 각 부재간 연결상태 등은 설계도면에 표시된 지표와 현장에서 직접 측정한 실측치를 기초로하여 결정한 후, 모델 작성시에 이를 부재의 강성이 부재간 연결조건 및 경축조건 결정을 위한 기본자료로 활용하였다. 또한, 캐비닛의 앞, 뒤후 문착을 포함한 구조요소강재의 중량은 강재의 표준단위중량(7.85×10³ kg/m²)을 이용하여 직접 계산하고, 내부에 복잡하게 배치된 각 층의 기가와 전선 등의 중량은 진동시험 수행후 해체하여 각 부품 별로 중량을 이용하여 실측하였다. 비닥교경구를 포함한 대상캐비넷 전체 중량은 현장에서 실측한 결과 317kg으로서 이것은 강재의 단위중량을 적용하여 계산된 구조용 강재 중량과 해체하여 측정한 내부 각 부품의 중량 및 계산 혹은 확정에 포함되지 않은 각종 소규모 내부 부품 및 전선의 중량을 포함한다. 계산 혹은 측정된 대상캐비넷의 중량을 표 2에 요약하였다.

(가) 집중절량-보요소모델 (나) 프레임모델 (다) 유한요소모델

그림 4 모델링방법에 따른 세가지 해석모델
표 2. 대상키비넷 및 구성요소별 중량

<table>
<thead>
<tr>
<th>구성 요소</th>
<th>중량</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>강재중량</td>
<td>구조용 보강재 및 판넬</td>
<td>182.48 kg</td>
</tr>
<tr>
<td></td>
<td>비단고정구</td>
<td>21.64 kg</td>
</tr>
<tr>
<td></td>
<td>문짝 (전면, 후면)</td>
<td>55.60 kg</td>
</tr>
<tr>
<td>기기중량</td>
<td>PC (2번째 층)</td>
<td>140 kg</td>
</tr>
<tr>
<td></td>
<td>전기부품 (지붕상단)</td>
<td>12.4 kg</td>
</tr>
<tr>
<td>진여중량 (전선 및 연결장치)</td>
<td>31.88 kg</td>
<td>계산치</td>
</tr>
<tr>
<td>총중량</td>
<td>317.0 kg</td>
<td>실측치</td>
</tr>
</tbody>
</table>

3.2 작성과정 및 결과

대상키비넷은 바닥부의 고정구(future) 상단에서 고정지지된 것으로 가정하여 고정구 프레임의 영향은 모델링에서 제외하였다. 이에, 모든 구조요소의 재료특성은 강재의 포준재료특성(탄성계수 $= 2.1 \times 10^5 \text{kg/cm}^2$, 포화응력=0.3)을 사용하였다.

(1) 김중질량-보수모델

김중질량-보수모델은 적절한 시간에 대비넷의 거동을 단일보수동으로 가정한 모델로서, 대상키비넷의 활성화 및 축방향강성을 한 계의 동가요소로 이치화한 모델이다. 이 모델에서는 동가요소의 환방향 강성을 캐비넷의 각 모서리에 위치한 수직보강재의 도심점에서 계산된 빅레와 수직보강재의 활성성의 합으로 표현한 것으로서 수직보강재 상호간의 수평방향 연결에 따른 강성의 변화를 무시하였다. 또한, 보수의 축방향 강성 계산시에도 동일한 단면을 고려하였다. 대상키비넷의 구조질량 및 각 층의 기기질량은 해당 측면재판재널의 높이에 김중질량으로 배치하였다. 이로부터 계산된 각 결과의 김중질량특성과 동가요소의 단면특성은 표 3과 표 4에 나타낸 바와 같다.

표 3. 김중질량-보수모델의 결과

<table>
<thead>
<tr>
<th>결과</th>
<th>질량</th>
<th>결과</th>
<th>질량</th>
</tr>
</thead>
<tbody>
<tr>
<td>번호</td>
<td>(kg·sec/cm)</td>
<td>번호</td>
<td>(kg·sec/cm)</td>
</tr>
<tr>
<td>2</td>
<td>78.111×10^3</td>
<td>4</td>
<td>68.045×10^3</td>
</tr>
<tr>
<td>3</td>
<td>84.345×10^3</td>
<td>5</td>
<td>41.995×10^3</td>
</tr>
</tbody>
</table>

표 4. 김중질량-보수모델의 단면특성

<table>
<thead>
<tr>
<th>단면적(cm²)</th>
<th>단면2차모멘트(cm⁴)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ixy</td>
</tr>
<tr>
<td>91.52</td>
<td>379.34</td>
</tr>
</tbody>
</table>

(2) 프레임모델

3차원 프레임모델은 캐비넷의 강성을 캐비넷의 좌, 우측에 각각 별도의 보수로서 표현하고, 좌, 우측의 보수를 측면판 및 수평보강재가 위치한 각 결과에서 수평방향 보수로 연결한 모델
이다. 좌, 우측의 등기보요소의 강성은 겹중질량 보요소 모델의 강성을 양쪽 벽체부분으로 양분하여 계산하였다. 모델의 관성 효과는 문의 형태를 포함한 구조질량과 내부 가기 및 부품을 포함한 중첩된 둔체와 수평보강재 등의 질량을 해당놓이하여 겹중질량으로 배치함으로써 고려하였다. 계산된 등기보요소의 단면특성 및 각 결과의 집중절량특성은 5와 6의 표에 나타낸 바와 같다.

(3) 3차원 유한요소모델

이 해석모델작성시에는 해석대상 캐비넷을 3차원 요소모델로 표현하고, 모든 부재들의 연결 상태는 강체연결성태로 가정하였다. 해석모델의 강성을 표현하기 위하여 좌, 우측 벽체와 지붕판, 각 층의 슬래브판 및 내부의 수직보강판은 3차원 요소모델로 이상화하고, 수직보강재와 수평보강재는 보요소로써 표현하였다. 지붕과 양측 벽체 판넬의 모서리부를 따라 접혀서 보강된 부분의 강성 증가효과를 고려하기 위하여 판요소의 단부를 따라 별도의 보요소를 추가 연결하였다. 각 층의 슬래브판 및 내부의 수직보강판 모서리부에 접혀서 보강된 부분과 캐비넷 입, 뒷 문학의 강성은 무시하였다.

| 표 5 프레임모델 축방향요소의 단면특성 |
|-------------------------------|---------|-----|
| 부재 종류 | 요소번호 | A (cm²) | I (cm⁴) |
| 지붕슬래브 | 27 | 25.6 | 0.16 |
| 중슬래브 | 21, 23, 25 | 18.56 | 0.16 |
| 수평보강재 | 22, 24 | 1.96 | 4.30 |
| | 26 | 3.84 | 8.60 |

(*) 그림 3(나) 참조

| 표 6 프레임모델의 결중질량 |
|-------------------------------|-------------------|
| 결중 번호 | 질량 (kg·sec/cm) | 질량 (kg·sec/cm) |
| 2 | 2844.08×10³ | 12 |
| 3 | 1279.83×10³ | 13 |
| 4 | 1013.44×10³ | 14 |
| 5 | 1939.06×10³ | 15 |
| 6 | 1559.65×10³ | 16 |
| 8 | 2575.08×10³ | 18 |
| 9 | 843.33×10³ | 19 |
| 10 | 1678.29×10³ | 20 |

| 표 7 유한요소모델에 사용된 보요소의 단면특성 |
|-------------------------------|---------|-----|
| 부재 종류 | 단면특성 | 단면적 (cm²) | 전단면적 (cm²²) | 단면2차모멘트(cm⁴) |
| 좌-우 (X-방향) | 3.2 | 1.28 | 0.64 | 4.3 |
| 전-후 (Y-방향) | 3.2 | 1.6 | 1.6 | 13.35 |
| 수직보강재 | 7.2 | 2.88 | 4.32 | 53.72 |
| 판넬모서리 보강부 | 2.88 | 0.96 | 1.92 | 5.1 |

해석모델의 관성효과를 고려하기 위하여 대상캐비넷의 구조질량 및 각 부품의 질량은 3차원 요소 모델은 보요소의 단체적질량 혹은 단위길이당질량으로 입력하여 동적해석시 전산프로그램에 의해 각 결과의 집중질량(humped mass)으로 자동 계산되도록 하였다. 강성모델에 포함되지 않은 전, 후 문학의 질량은 양쪽 측면에 위치한 벽체의 모서리 보강부를 포함하는 보요소에 부가하였으
4. 동특성해석 및 결과의 비교분석

주성된 각 해석모델의 동특성해석을 위하여 범용간단프로그램 SAF90(3)을 이용하여 고유치해석을 수행하고 그 결과를 표 9에 비교하였다.

표 9 해석모델과 실험의 X-방향 고유진동수 비교

<table>
<thead>
<tr>
<th>시험지</th>
<th>집중량-보소요모델</th>
<th>프레임도달</th>
<th>유한소요모델</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.69Hz</td>
<td>14.12Hz (-10.0%)</td>
<td>18.93Hz (+20.7%)</td>
<td>16.70Hz (+6.4%)</td>
</tr>
</tbody>
</table>

() 안의 숫자는 시험지와의 고유진동수 차이임.

표 9에서 보는 바와 같이 집중량-보소요모델의 고유진동수는 시험지에 비해 약 10%정도 작게 계산됨을 알 수 있다. 이것은 일반 실험과정에서 사용되는 방법을 따라 4개의 수직방향계를 연결하는 수평방향계의 작용을 무시하였기 때문에 나타난 결과로 판단된다. 이는 그림 5의 (7)에 나타낸 바와 같이 항속의 수직보와 벽체의 강성을 기초로하여 고려하여 실제보다 강성을 적게 평가한 것으로 인식하는 것으로 판단된다.

한편, 수평방향계의 영향을 보소요로서 이상화한 프레임모델에서 계산된 고유진동수는 시험지에 비해 20%정도 크게 나타났다. 이것은 수직 및 수평방향계의 복합단면에 대한 단면감수가 과다하게 계산되었음에 따른다. 이는, 프레임모델에서는 그림 5의 (7)에 나타난 바와 같이 수평연결계의 모멘트연결효과로 인하여 좌·우측 수직보의 우려모멘트에 의한 강성증진효과를 실제보다 과대평가하고 있음을 시사한다.
유한요소모델링을 사용한 고유치해석 결과는 실험치에 비하여 약 6%정도의 차이가 발생하였으며, 이것은 실제의 대상기기의 각 구조요소 혹은 부품간에 서로 접합점(spot welding) 또는 볼트로 연결되어 있으나, 모델링 과정에서 모든 요소들이 고정 연결인 것으로 가정한 사실에 기인하는 것으로 판단된다.

이상으로부터 본 연구의 주요 관심대상인 접중결코선요소모델 및 프레임모델의 작정시 수직부재와 수평연결제의 연결조건을 그림 5(가)와 같이 스프링연결조건으로 고려할 경우, 보다 더 실제와 가깝게 대상 모델의 동특성을 표현할 수 있을 것으로 기대된다. 이는 수평연결제와 수직부재의 연결부에서 모멘트 전달률을 감소시키거나 혹은 수평연결제의 활장성을 적절히 감소시키는 방법을 통하여 이상화할 수 있는 것으로 판단된다.

![그림 5 수평연결제와 수직요소의 연결조건](image)

(가) 현지연결 (나) 모멘트연결 (다) 스프링연결

5. 결론

본 연구를 통하여 다음과 같은 결과를 얻을 수 있었다. 비교적 단순화하면서도 실물에서 주로 이용되는 접중결코선가보모델의 작정시에는 각 구조요소의 연결부에서 복합된 효과로 인한 단면계수를 적절히 고려하지 않을 경우 실제보다 강성이 적게 표현될 수 있음을 확인하였다. 또한, 프레임모델을 사용하는 경우에는 수평철거 연결제의 모델링 방법에 따라 대상기기의 강성이 과대평가 될 수 있음을 확인하였다. 이와같은 결과로부터 얻은 결론은 다음과 같다.

- 기존 기술현황상의 해석방법을 통하여 케비넷형태의 기기에 대한 공학적으로 사용 가능한 전 형기동상태의 동특성을 얻을 수 있다. 단, 모델링 방법에 따라 동특해석결과가 달라질 수 있으므로, 모델 작정시 각 모델의 특성에 따라 단면계수 및 연결장대 등에 대한 특별한 고려가 필요한 것으로 판단된다. 특히, 유한요소해석모델의 작정시에는 각 부재의 볼트연결 혹은 용
접연결 등의 연결상태를 고려한 해석모델 작성이 요구된다.
- 캐비넷 형태의 기기의 경우, 상대적으로 큰 입력음드(1.0g 정도 이상) 작용시에는 현저한 비선형특성을 나타내기 때문에 이와 같은 특성을 해석모델에 반영하기 위해서는 별도의 비선형모델작성기법이 요구된다.

6. 참고문헌