'2000

316LN

Creep Modelling of Type 316LN Stainless Steel

Abstract

Creep curve for type 316LN stainless steel was modelled by using the K-R damage equations. Seven coefficients used in the model, *i. e.*, *A*, *B*, *k*, *m*, λ , *r*, and *q* were determined from theoretical and calculated data, and their meanings were also analyzed. To quantify damage formation parameter(ω), cavity amount was measured on the crept specimen taken from an interrupted creep test with time variation, and then the amount was reflected into K-R damage equations. Coefficient λ which is regarded as a creep tolerance feature of a material increased with increase of creep strain. Theoretical curve in $\lambda = 3.0$ well coincided with an experimental one to the full level of lifetime. Master curve between damage parameter and life fraction matched with the theoretical one in exponent r = 24 value, which decreased with increase of parameter ω which increased rapidly after 80% life fraction. It is concluded that K-R equation was reliable as the modelling equation for 316LN stainless steel. Coefficient data obtained from 316LN stainless steel can be utilized for remaining life prediction of operating material.

가 . , , 304 316 2 [1], Kachanov-Rabotnov(K-R)• 가 (void) , , 1 2 K-R 3 [2,3] K-R Marriott, Penny Mclean, Cane, Stamm, Belloni [4-7] , Nimonic 80A , 2.25% Cr-1Mo, AISI 310 , 가 가 , cavity 가 가 가 316LN K-R 가 . K-R . 316LN K-R . . 2. 316LN 40mm Table

,

 $1\,100^{\circ}\mathrm{C}$ 1 1 7 30mm 가 SiC 6mm . 가 #1000 . ASTM ,

 $\pm \, 2^{\circ} C$.

1.

	260 MPa	600°C, 630°C, 650°C	
		620°C, 260MPa	
	620°C, 260MPa		
		20hr, 130hr, 327hr, 430hr, 457hr() 5
	interrupted creep test		가
,			
	(JEOL, JSM-5200)	cavity	

Table 1. Chemical composition of type 316LN stainless steel(wt. %)

.

•

Fe	C	Si	Mn	Р	S	Cr	Ni	Мо	Ν
bal.	0.023	0.55	0.87	0.020	0.0010	18.50	10.70	2.51	0.13

3.

500

Kac	nanov	(continuum
damage		가
가 ,	가 .	
	(A) .	(A ₀)
	A (continuity) ,	, ω ω 7 · 1
	A., P7	$ \mathcal{O}_o \qquad \mathcal{O}_o = P/A_o \qquad , \qquad t $
	$\sigma_t = \sigma_o \frac{A_o}{A_t} = \frac{\sigma_o}{(1 - \omega)}$	(1)
ז	, $\omega = (1 - A / A_o)$, , (damage rate)	Norton's law
	$\frac{d\omega}{dt} = K \sigma_t^{\nu}$	(2)
,	<i>K</i> , <i>v</i> . (1) (2)	
	$\frac{d\omega}{dt} = K \sigma_o^{\nu} (1 - \omega)^{-\nu}$	(3)
	$(3) t = 0 t = t_R$,

,

$$t_{R} = \frac{1}{K (1 + \nu) \sigma_{0}^{\nu}}$$
(4)

, Kachanov
$$\log \sigma - \log t$$
 .
 $t = 0$ $\omega = 0$, $t = 1$
Rabotnov Kachanov

Rabotnov

. ω $(0\!\le\!\omega\!\le\!\omega_f) \qquad ,$ 1 Norton's law •

$$\frac{d\varepsilon}{dt} = A \ \sigma^m (1 - \omega)^{-q} = \frac{\dot{\varepsilon_o}}{(1 - \omega)^q}$$
(5)

$$\frac{d\omega}{dt} = B \, \phi^k \left(1 - \omega \right)^{-r} = \frac{\omega_o}{\left(1 - \omega \right)^r} \qquad (0 \le \omega \le \omega_f) \tag{6}$$

$$A, B$$

$$\sigma = \sigma_o \qquad . \tag{6}$$

,

$$(1 - \omega)^{1+r} = 1 - B(1+r) \sigma_o^k t$$
(7)

, (7)

,

$$\varepsilon = \lambda \, \dot{\varepsilon_o} \, t_R \, \left[1 - \left(1 - \frac{t}{t_R} \right)^{1/\lambda} \right]$$

$$= \lambda \, \varepsilon^* \, \left[1 - \left(1 - \frac{t}{t_R} \right)^{1/\lambda} \right]$$
(8)

$$t_R = \frac{1}{B (1+r) \sigma_o^k} \tag{9}$$

$$\varepsilon^* = \lambda^{-1} \varepsilon_R = \dot{\varepsilon_o} t_R = A \sigma_o^m t_R$$
(10)

$$\lambda = \frac{1+r}{1+r-q} \tag{11}$$

$$\varepsilon_{R} = \frac{\lambda}{1+r} \cdot \frac{A}{B} \cdot \sigma_{o}^{m-k}$$
(12)

(minimum creep rate), σ_o , $\dot{\varepsilon_o}$ σ_o . , &* , \mathcal{E}_R Monkman-Grant(M-G) (life fraction) (13)가 ,

$$(1 - \omega)^{1 + r} = 1 - \frac{t}{t_R}$$
 (13)

$$\varepsilon = \varepsilon_R \left[1 - \left(1 - \frac{t}{t_R} \right)^{1/\lambda} \right]$$
(14)

4.

4.1. Fig. 1 316LN ε - ε_o 가 , 620°C, 260 MPa 457.2 8.472x 10⁻⁸/sec . 3 300 0.2% offset . M-G E/E * Fig. 2 (8) t∕t_R λ . λ , λ $\lambda = 1$ 가. M-G $\varepsilon_R = \lambda \cdot \varepsilon^* \qquad \lambda$, *E* * λ 가 (creep tolerance) , 90% 10% 가 . 가 λ 316LN $\varepsilon^* = t_R \cdot \dot{\varepsilon}_o = 457.2 \text{ x } 3600 \text{ x } 8.472 \text{ x } 10^{-8} \text{ /sec} = 0.139 \text{ 7}$ M-G strain, E* . , M-G strain (10) (\mathcal{E}_R) $\lambda = \epsilon_R / \epsilon^* = 0.3847 / 0.139 = 2.78$. $\lambda = 2.78$ λ ε/*ε* * t∕t_R Fig. 4 . Fig. 3 316LN $\lambda = 2.78, \ \lambda = 3.0$. 316LN 가 $\lambda = 3$, 가 K-R .

 Fig. 4
 , ω

 316LN
 620°C, 260 MPa
 interrupted creep test
 5

.

cavity			3	가
300	cavity 7	ጉ		가
. Fig.	5 200 SEM		cavi	ty
가	, cavity	300	200 µm	2
, 430 (24%	strain) 400 µr	n^2		
,	, ,	800 µm ²		. Cavity
300	가		316LN	
cavity	• •			(13)
Fig 6				(10)
Fig 6 r		Ŵ	r	
115. 0 7		w	r	
		80%	,	
	,	1	1	
3 161 N		1	80%	r - 24
80%	71		0070	7 - 24
800%	~1		800%	
r - 24	3 161	N	30 70	(11)
r – 2 4	a = 16.6		26, 7	80%
y cavity 7	<i>q</i> 10.0			0070
cavity >1			71	
7ŀ		71	~1	
21		21		
4.2				
1.2.		4 R k m	dra 7	k m
ar	4	R	20, 7, 9	λ, π
, 4, 7	, <i>11,</i> λ	D	,	a r
ar	. 20			y , 1
. 9, 7				7
$\lambda r a$. /
<i>x</i> , <i>r</i> , <i>y</i>	,		71	
	1 R k m		~ 1	71
	(5) (10)	las a las		~1
. <i>A</i> , <i>m</i>	(5) (10)	log 0 - log	ε	m
A	. <i>D</i> , К	D	log	g U− lOg lr
0.1/7	K	, <i>В</i>	(9)	
3 161		т, к		(D
[8] m	= 1.3, K = 9.0	, 10- ³⁰ 0 10 - ¹	-15	А, В
$A \approx 1.980 \times 10^{23} (\text{M})$	$HPa sec), B \approx 4.476$	bx IU (MPa se	с)	

5.

DB

- 1. J. K. Lai and A. Wickens, "Microstructural Changes and Variations in Creep Ductility of 3 Casts Type 316 Stainless Steel", *A cta. Metal*, Vol.27, pp. 217 (1979).
- 2. D. L. Marriott, R. K. Penny, "Strain Accumulation and Rupture During Creep Under Variable Uniaxial Tensile Loading", J. Strain Anal., (L. Mech. E.) Vol. 8. p.3 (1973).
- 3. R. K. Penny, "The Usefulness of Engineering Damage Parameters During Creep", J. Metal and Materials, Vol.8, pp. 278-283, (1974).
- 4. D. Mclean, "Materials Science in High Temperature Service", *A cademia Nazionale dei Lincei*, Roma, (1973).
- 5. B. J. Cane and C. J. Middleton, "Intergranular Creep Cavity Formation in Low Alloy Bainitic Steels", *Metal Sci.*, Vol.15, (1981).
- 6. H. Stamm and U. von Estorff, "Determination of Creep Damage in Steels", Proceedings 5th Int., Conference on Creep of Materials, Florida, USA (1992)
- G. Belloni, G. Bernasconi and G. Piatti, "Creep Damage and Rupture in AISI 310 Austenitic Steel", *Meccanica*, Vol.12, pp.84-96, (1977).
- 8. , , , , , "AISI 316L(N) Creep (P) ", 98 , p.216 (1998).

stun nuclon(66) with the function (" m) υı for type 316LN stainless steel.

strain fraction($\mathcal{E}/\mathcal{E}^*$) and life fraction (t/t_R) for type 316LN stainless steel.

260MPa for type 316LN stainless steel.

Fig. Variation of damage factor tith life fraction.