ICH

Development of High Power and Long Pulse ICH Antenna

,

150

17

Abstract

Engineering design of 6 MW ICH(Ion Cyclotron Heating) system for the plasma heating and current drive in KSTAR(Korea Superconducting Tokamak Advanced Research) tokamak is carried out and a proto-type antenna is domestically fabricated. The antenna is mainly composed of center-grounded 4 current straps connected with 6"-, 40 -VTL(Vacuum Transmission Line) on both ends, single-layer Faraday shield and 4-section cavity, forming a plug-in type to be inserted from the horizontal port of KSTAR vacuum vessel. With the machine under vacuum, the

'2000

launcher changes its radial position up to 10 cm from the innermost position. For 300 sec operation, the antenna has many cooling channels inside the current straps, Faraday shield, cavity wall and VTLs, and it is actively cooled with demineralized and deionized water to remove the dissipated RF loss power and incoming plasma heat load of 0.5 MW/m^2 max. Flow rate of cooling water in each coolant path is measured and mechanical test is performed.

1.

(4-section cavity)

KSTAR (Korea Super	conducting	T okamak	Advanced	Research,	가
)[1]		,	R=1.81	m,	a=0.5m,
(elongation) =2,	(triangulari	ty) =0.8	,	Вт=3.	5T,
$I_P = 2MA$. KSTAR			300)	,
ICH (Ion Cyclotron He	eating) [2] KSTA	R 2	가	,
6 MW			,	KSTAR	
(upgrad	e 2	2	12	MW).
2:	5 60 MHz				가
,					
. I	СН				가 ,
KSTAR	,		,		
ICH	, prot	to-type			
		ICH			
, KSTAR			가	Ι	СН
			9.9	MW/m^2	
300 sec	가				
				proto-t	ype
2. ICH					
ICH K	STAR		(74	8.2mm × 120	00mm)
6 MW			, , , , , , , , , , , , , , , , , , ,		,
proto-type		. Proto-t	ype		
	Fiσ	1		Tahle 1	1
, ,		-		1 4010 1	4
(current strap),	7	(mono	-layered Fa	uraday shie	ld tube), 4

.

,

, KSTAR

10 cm

. 300

 $0.5\ MW/m^2$

Fig. 1. ICH antenna system for KSTAR.

+2 cm

Maximum RF power :		6 MW				
Pulse duration :		300 sec				
Frequency 1	range :	25 60 MHz				
Maximum a	allowable voltage :	35 kV				
Type :	-	plug-in type				
Current straps						
	number :	4				
	type :	center-grounded				
	material :	Cu-plated SUS316L				
	size :	$752 \mathrm{mmH} \times 98 \mathrm{mmW}$				
	strap cooling :	water cooling				
Faraday shie	ld					
	type :	mon-layered tube type				
		2 sections, 33 tubes/section				
	material :	Inconel 625				
	surface treatment :	Cu-plated and B4C-coated				
(proto-type antenna : Cu-plated SUS3		1-plated SUS316L)				
	tube cooling :	water cooling				
Cavity box : 4 sections						
	material :	SUS316L				
	wall cooling :	water cooling				
Vacuum tra	Vacuum transmission line					
	number :	8				
	size :	6"				
	characteristic impedance : 40					
	material :	Cu-plated SUS304				
	cooling : water-c	ooled center conductor				
Radial strok	te :	100 mm				

Table 1. Characteristics of ICH antenna for KSTAR

_

Table 2. Electric circuit parameters of the current straps.

Electrical parameters		Values
-	outer strap	2.56
Inductance, L[10 H/m]	inner strap	2.59
	k12 (=k34)	7.98
	k 23	7.85
Mutual coupling coefficient, k[%]	k 13	1.62
	k 14	0.49
Effective conscitence $C = [10^{-10} E/m]$	outer strap	1.17
Effective capacitance, Ceff[10 F/III]	inner strap	1.17
Characteristic impedance 7 []	outer strap	46.7
Characteristic impedance, Z ₀ []	inner strap	47.0
Deletive phase velocityv /o	outer strap	0.609
Relative phase velocity, $=v_{p}/c$	inner strap	0.605

가 $28 \ kW/m^2$. 40 kW/m²7 . 12 mm 가 . ANSYS ,[3] 가 130 1.125 m/sec, 40 54 , , 53 MPa .[3] 가 , 가 $0.5 MW/m^{2}$ 300 . 13.4 mm, 15.9 mm(5/8") Inconel 625 가 . 2 m/sec,40 149 160 MPa . Inconel 625 (yield stress) 252 MPa, 756 MPa disruption . 40 MPa .[3] 가 가 .[4,5] . sections 33 , 171° sections section R=1100 mm ICH , 4 **±**1 mm .[6] Cu Cu 0.1 mmB₄C . B4C , proto-type . Inconel 625 B_4C SUS316L Inconel 625 , . septum plate , , , 8 . 2 . 가 septum plate

Fig. 2. Voltage distribution along the current strap(length, h), feeder(length, g₁) and vacuum transmission line.

가 가

$$Z_0 = 60 \quad n\left[\frac{r_o}{r_i}\right] \tag{1}$$

 $r_{\rm o}$

 $E_{max} = \frac{V_{max}}{r_i \quad n\left[\frac{r_o}{r_i}\right]}$ (2)

. ICH

150 mm,

KSTAR SUS304 tube

 \mathbf{r}_{i}

146 mm

stationary plate . Bellows stroke 100 mm .

Fig. 4. Detail view of the VTL(Vacuum Transmission Line).

4 8 support box • 가 support box . holder , support box support box . 1.5 ton support box 60 cm . Support box 4 roller가 , guide roller KSTAR 가 . support box bellow s 가 100 mm proto-type rail disruption 가 guide rail

galaction30.4 N⋅m servo2.3 ton30.4 N⋅m servomotor, (17:1). Servo motorPLC..ICH, , , , ,

, Fig. 5 . Stationary plate coolant feeder bellows7 73 mm . support box . Bellows stroke vacuum bellows 7 100 mm . 7 7 7 , inlet manifold

3 1" . 3 coolant inlet inlet , water jacket wall water jacket 33 inner wall 'U' 가. inner wall section 33 water jacket 2 33

12 mm , coolant manifold . , inlet manifold 'T' . 4

71.6.3 m. (cavity box)wall coolant manifold12 mm

.

Fig. 5. Coolant paths of the ICH antenna.

3.

,

38.4 ,

• (2 m/sec) , , .

4 , mm/sec \pm 0.1 mm •

.

Fig. 6. Front view of the fabricated proto-type ICH antenna.

multipactoring discharge [8] Fig. 7 , . ICH 7 KSTAR , 1600 /s 7 Turbomolecular Drag Pump . , thermocouple . 230 kA · Turns , 930 Gauss

KSTAR (Korea Superconducting Tokamak Advanced Research, 7))7)6 MWICH (Ion Cyclotron Heating)

Fig. 7. RF test chamber for the ICH antenna.

- [1] G.S. Lee et al., Bull. Am. Phys. Soc. 41 (1996) 1439.
- [2] B. G. Hong et al., "Physics and Engineering Aspects of the ICRF Heating and Current Drive System on KSTAR", 17th IEEE/NPSS, Symposium on Fusion Engineering, October 6-9, 1997, San Diego, USA.
- [3] B.G. Hong, C.K. Hwang, S.H. Jeong, J.S. Yoon, Y.D. Bae, J.G. Kwak and M.H. Ju, 'Ion Cyclotron System Design for KSTAR Tokamak', KAERI/TR-1053/98, 1998.
- [4] M. Bures, J.J. Jacquinot, D.F.H. Start and M. Brambilla, Nuclear Fusion 30-2 (1990) 251.
- [5] D.W. Swain, R.I. Pinsker, F.W. Baity, M.D. Carter, J.S. deGrassie, E.J. Doyle, G.R. Hanson, K.W. Kim, R.A. Moyer and C.C. Petty, Nuclear Fusion 37-2 (1997) 211.

- [6] 'JET Joint Undertaking, Progress Report 1993', 1994, p.45.
- [7] S. Ramo, J.R. Whinnery and T.V. Duzer, 'Fields and Wave in Communication Electronics', JohnWiley & Sons, 1994, p.250.
- [8] H. Kimura, T. Fujii, Y. Ikeda, M. Saigusa, J. Sagawa, M. Seki, M. Uehara, N. Kobayashi and Y. Saito, 'Power Test of the JT-60 ICRF Launching System', JAERI-M86-113, 1986.