Study on Mechanical and Creep Characteristics of Nb containing Zr Alloys

150

M5 (Zr - 1Nb - 0.2X; X = Mo, Cu)ZIRLO (Zr - 1Nb - 1Sn - 0.3Fe - 0.1X ; X = Mo, Cu)450 700 가 . OM TEM Knoop , Knoop 가 가 가 가 가 가 2 ZIRLO M5 Mo 가 Cu 가 가 가

Abstract

The mechanical properties of M5 type (Zr-1Nb-0.2X ; X = Mo, Cu) and ZIRLO type (Zr-1Nb-1Sn-0.3Fe-0.1X ; X = Mo, Cu) alloys were evaluated for the optimization of final annealing process of these alloys at the annealing temperature regime of 450 700 . The microstructure was observed by OM and TEM. The mechanical properties were investigated by the tensile, Knoop hardness and creep test. The test results of tension and hardness showed that the mechanical strength decreased rapidly with annealing temperature, but the strength remained constant above the fully recrystallization temperature. The strength of alloys would be due to the mechanism of solid solution, precipitation, and grain size. The appearance of second phase may be played a major role in the strengthening of the alloys when these were annealed at above the recrystallization temperature. Tensile strength of ZIRLO type alloys was higher than that of M5 type alloys. The addition of Mo was more effective in strengthening than that of cu. The effect of alloying element on creep strength showed similar trend with that of tensile strength.

'2000

Zr Zircaloy - 47 . 1960 Zr-1Nb pН • 가 Zircaloy 가 Zircaloy ZIRLO(Zr - 1Nb - 1Sn - 0.1Fe), M5(Zr - 1Nb - 0.12O)ZIRLO (Zr - 1Nb - 1Sn - 0.3Fe - 0.1X; X = Mo, Cu)[9]. M5 . (Zr - 1Nb - 0.2X; X = Mo, Cu)Creep (Mo, Cu) , Mo 가 [1]. , Mo Zr 가 Creep , Cu

 Creep
 가...,

 Mo, Cu가 Zr
 Creep

2.

Nb 가 M5 ZIRLO Zr Creep 가 Mo, Cu Zr - 1Nb 가 Zr - 1Nb - 1Sn - 0.3Fe Mo, Cu 0.2, 0.1Wt% 6 VAR(Vaccum Arc 400g Remelting) button button ingot 1020 30 590 60% 30 590 3 가 가 . 40% 2 , 70t on 30% 1 . 1 가 590 3 , 2 가 590 3 가 57% 450 , 500 , 600 , 700 3 Creep (Optical Microscope, OM) (Transmission Electron Microscope, TEM) Hot Mounting : 30Me: 30Me: 30Me: 10Me 3 : : 70**µ**m (Perchloric Acid) 10% (Methyl Alcohol) 90% -35 , 가 20V (Jet Thinning) .

ASTM E8 , INSTRON-4505(10ton)

1.

T

3.

.

3-1.

Fig.1(a) M5	450	, 500 , 600	, 700			
	. M5	3	450			가
	, 500	가				
, 600	3					700
	3	2			, Mo, Cu	가
	가		, Cu	Мо	가	

Fig.1(b)	ZIRLO	450 , 500	, 600 , '	700				
		. M5	가	ZIRLO		450	가	
	, 500				, M5			
가	. 600	ZIRLO					, M5	
			, 700			3		2

Fig.2(a) M5 450 , 500 , 600 , 700 . Mo, Cu 7t , Mo 7t Cu 7t . 500

가 가 가 가 가 , Cu 가 가 가 가 가 , Cu 가 Mo 가 , Mo , , , , , , , , , [8]. Mo 0.18Wt%, Cu 0.13Wt%,

 Nb
 Sn
 0.5Wt%, 1.5Wt%
 [2 4].

 Fig.2(b)
 ZIRLO
 450, 500, 600
 700

 .
 M5
 , M5

 , 500
 M5

.

가

I

F1g.3	M 5	ZIRLO				
	Tał	ole 1 .				
		가		가		M5
	ZIRLO	, Mo 가	Cu 가			. 가
			가			
			, M5	ZIRLO		가
		,				[2, 3].
			, N	15	ZIRLO	, Cu 가
	Мо	가	가			
		. 700				가
		,		2		
						.[10]
Fig.4	M5	ZIRLO				Table 1
			,	400		
	(A	ctivation Energy)	E (Young	g's Modulus)가	,	
		,		[5	5].	
3-3.						
Fig.5	M 5	ZIRLO		Knoop		
	Tab	ole 1 .				

3-4. Creep

Creep		Creep	:	가			Creep	(Steady
State Cre	eep	Rate)	Fig.6	M5	ZIRL	.0	Cree	р
		, Fig.7(a)	(d)	M 5	ZIRLO			
Creep			. Creep			:	, ,	
				[7].	2	(Stead	ly State Regio	on)
Creep		,	T able	1		Creep		
	가	M5	ZI	RLO	, Cu 기		Mo 가	Creep
			,				M5	
ZIRLO		, Cu 가		Mo 가				
							Cu 가	

.

가			Creep							,	Cu
가 Zr	가	Zr			가		[11]				
가	700			Creep		가			,		2
					Creep						
가						Zr		550			
diffusional	creep		,				Creep				
[6].						С	reep	,			
	.[6]				Creep		가		,	2	
5	የት										

4.

Zr				Creep		Mo,	Cu
,	,		,	,	Creep		
(1)				ZIRLO	M 5	, Mo 가	Cu 가
				,			
			, 700			2	
(2)	가		가		,		
		가					
(3)		,		Creep	, ZIRLO	M 5	, Mo 가
C	u 가			,	Creep		
				2			
Creep			2	700			
(4)			Creep		가		2
		,				가	

- 1. B.L. Adams, D.L. Baly and K.L Murty, Scipta Met. 12, 1151(1978)
- 2. K.L. Murty, J. Ravi and Wiratmo., J. of Nucl. Mater. 21-33 (1993)
- 3. K. Linga Murty, J. Ravi Wiratmo., J. of Nucl. Mater. 359-371 (1995)
- 4. J.K Chakravartty, G.K. Dey, S. Banerjee., J. of Nucl. Mater. 247-255 (1995)
- 5. M. Pahutova, J. Cadek., J. of Nucl. Mater. 249-255 (1977)

•

6. D.B. Knorr and M.R. Notis., J. of Nucl. Mater. 56, 18 (1975)

- 7. S.L. Wadekar, S. banerjee, V.V. Raman., Correlation of Microstructure and Mechanical Properties of Zr-Sn Alloys. 140-155 (1991)
- 8. Y.B. Chun, S.K. Hwang., J. of Nucl. Mater. 265, 28-37 (1999)
- 9. , , , , , 9 2 (1999)

I.

- 10. K. Holm, J. D. Embury., Acta Metallurgica. Vol. 25 1191-2000 (1977)
- 11. M. Pahutova, K. Kucharova, J. Cadek ., J. of Nucl. Mater. 10-20 (1984)

Table 1. Summary of test results for M5 and ZIRLO typealloys in various test conditions

Chamical	Final	U.T.S	U.T.S	Knoop	Stoody State
Commonition	Annealing	;20	;400	Hardeness	Steauy State
Composition	Temperature	(Mpa)	(Mpa)	(Hĸ)	Creep Kate(%s)
Zr-1Nb	450	535.6	342.4	175.0	15.78E-6
Zr-1Nb	500	493.9	288.4	161.6	22.77E-6
Zr-1Nb	600	394.7	208.7	129.6	142.3E-6
Zr-1Nb	700	401.2	211.1	132.8	0.811E-6
Zr-1Nb-0.2Mo	450	570.3	385.9	184.5	3.36E-6
Zr-1Nb-0.2Mo	500	525.1	328.4	174.2	8.863E-6
Zr-1Nb-0.2Mo	600	419.4	215.0	137.9	88.75E-6
Zr-1Nb-0.2Mo	700	425.2	227.0	139.8	0.744E-6
Zr- 1Nb-0.2Cu	450	540.6	345.6	178.7	10.89E-6
Zr- 1Nb-0.2Cu	500	499.4	289.7	163.5	14.6E-6
Zr- 1Nb-0.2Cu	600	406.7	210.0	133.8	149.8E-6
Zr- 1Nb-0.2Cu	700	412.1	218.3	134.3	1.38E-6
Zr- 1Nb- 18n- 0.3Fe	450	624.3	414.6	199.6	1.536E-6
Zr- 1Nb- 1Sn- 0.3Fe	500	590.7	390.0	190.6	1.555E-6
Zr-1Nb-1Sn-0.3Fe	600	446.5	245.6	143.0	5.241E-6
Zr-1Nb-1Sn-0.3Fe	700	445.0	243.2	145.6	1.470E-6
Zr- 1Nb- 18n	450	643.7	425.6	205.8	1.336E-6
-0.3Fe-0.1Mo Zr-1Nb-1Sn					
-0.3Fe-0.1Mo	500	598.6	401.4	192.8	1.414E-6
Zr-1Nb-1Sn	600	468.7	246.4	151.4	2.441E-6
-0.3Fe-0.1Mo Zr-1Nb-1Sn					
- 0.3Fe- 0.1Mo	700	470.5	250.8	154.0	1.28E - 6
Zr- 1Nb- 18n - 0.3Fe- 0.1Cu	450	624.7	416.1	201.0	1.337E-6
Zr- 1Nb- 18n - 0.3Fe- 0.1Cu	500	592.5	387.4	188.9	1.428E-6
Zr- 1Nb- 18n - 0.3Fe- 0.1Cu	600	465.6	249.8	143.9	4.022E-6
Zr- 1Nb- 1Sn - 0.3Fe- 0.1Cu	700	464.0	250.2	147.8	1.325E-6

L

Fig.1(a). Optical Micrographs of M5 type alloys after final annealing at 450 , 500 , 600 and 700 for 3hr

Alloys Final Annealing Temp.	Zr-1Nb-1Sn -0.3Fe	Zr-1Nb-Sn -0.3Fe-0.1Mo	Zr-1Nb-1Sn -0.3Fe-0.1Cu
450°C			
500°C			
600°C			
700°C			

Fig.1(b). Optical Micrographs of ZIRLO type alloys after final annealing at 450 , 500 , 600 and 700 for 3hr

Final Annealing				
T emp.	450	500	600	700
Alloy s				
Zr- 1N b			Run o se	
Zr - 1Nb - 0.2Mo				No. As
Zr - 1Nb - 0.2Cu				150nm

T

Fig. 2(a) TEM micrographs of M5 type alloys after final annealing at 450, 500, 600 and 700 for 3hr

Final Annealing Temp. Alloys	450	500	600	700
Zr - 1N b - 1S n - 0.3F e				
Zr - 1Nb - 1Sn - 0.3Fe - 0.1Mo			Manu of Ta	
Zr - 1Nb - 1Sn - 0.3Fe - 0.1Cu				150nm

Fig. 2(b) TEM micrographs of ZIRLO type alloys after final annealing at 450, 500, 600 and 700 for 3hr

I

Fig.3. The effect of final annealing temperature on the tensile strength of M5 and ZIRLO type alloys tested at room temperature.

Fig.4. The effect of final annealing temperature on the tensile strength of M5 and ZIRLO type alloys tested at 400 .

Fig.4. The effect of final annealing temperature on the Knoop hardeness of M5 and ZIRLO type alloys

Fig.6. The steady state creep rate of M5 and ZIRLO type alloys depend on final annealing temperature.

T

Fig.7. Creep curves of M5 and ZIRLO type alloys final-annealed at various temperature under test condition of 400 and 150Mpa
(a) Final annealing at 450
(b) Final annealing at 500
(c) Final annealing at 600
(d) Final annealing at 700