3 MSIV room /

Identification of Excessive Noise and Vibration in the Room of MSIV in Kori unit 3

103-16

 3
 MSIV room 96
 disk guide7
 bonnet type
 MSIV

 85%
 95%
 100%

 .
 MSIV room
 /

 .
 MSSV
 votex shedding
 7

 /
 .
 .
 .

Abstract

Main steam isolation valve (MSIV) in Gori-3 NPP is suffered from excessive vibration at the electric power of 85~95% and high-level noise at the full power operation after the valve was replaced by a bonnet type with disk guide. To identify the noise/vibration source and their countermeasures, noise /vibration data were collected and analyzed. As a result of the analysis, it was found that the excessive noise/vibration were originated from the vortex shedding at MSSV and amplified by MSIV.

1. 1 2 MSIV MSIV room / 2 MSIV 가 3 MSIV 96 disk guide가 bonnet type 85% 95% 100%

2000

2.

L

1. MSIV room

.

 2
 3
 MSIV
 '96
 2(b)

 disk guide7
 bonnet type
 .
 , 4
 MSIV
 2(a)

2. / MSIV

2	M	C	C	V
J.	IVI	S	S	v

MSL

MSIV

	~	~	* *	
M	S	S	v	

	#1	#2	#3	#4	#5
l, inch	34.4375"	34.9375"	35.125"	34.5"	35.375"
<i>l</i> , mm	875	887	892	876	899

2 Chemical Logic Steam Table MSL

.

2. 3 MSL

280 °C	64 bar	99.75 %	35 kg/m3	495 m/sec

	3	MSIV room	96			Ν	1SIV		2	disk	guide가
	bonnet t	ype			85%	95%					100%
							가			' 98	3
					/					,	
			4	/					/		
	3 100	%	3,4					3	MSIV	room	98
			Ν	ASIV							(
4), 4	10dB									
				2.4					1.		

A,C-line 3,4 B - line line • 가 .

			3. 3,4	MSIV	(dBA)
			A - line	B-line	C-line	
3	('98)	90	84	88	MSIV disk guide
3	('98)	90	85	88	MSIV
	4		81	73	78	MSIV disk guide

I.

,

4. 3 A-steam line 98 / (100%)

.

5. 3, 4 MSIV room (100%, : 371Hz)

3.

I

8 가,, 가 .

,(constant pressure source)(constant velocitysource)가

$$f_n = \frac{nc}{2 l_e} \tag{1a}$$

$$f_{2n+1} = \frac{(2n+1)c}{4 l_e}$$
(1b)

. n , c 2 495m/sec7⊦ . *l*_e .[4].

$$l_e = l + 0.82d \tag{2}$$

4 1 (1,2) MSSV . 6 MSIV room 245, 370 / MSSV . MSIV 325Hz

/

	#1	#2	#3	#4	#5
l, inch	34.4375"	34.9375"	35.125"	34.5"	35.375"
<i>l</i> , mm	875	887	892	#4 #5 34.5" 35.375' 876 899 1001 1024 124 121 247 241 370 363	899
<i>l</i> +0.85 <i>d</i> , mm	1000	1012	1017	1001	1024
	124	122	122	124	121
(Hz)	248	245	243	247	241
	371	367	365	370	363

가 9 MSIV

7

•

vortex shedding 7 / /

$$f_n = \frac{nc}{2l}$$

,

(3)

,

MSIV

96~98%

L

가 163, 326, 488Hz

325Hz

/ MSIV

9. MSIV

	10 MSIV		:	stem	가	FRF	. 3	
	steam		4	100%			, 4	
						. 3	,	
230,	570Hz	370 Hz	, 4	224, 500	Hz	340H z	Z	
		3,4	MSIV			가		3
	MSIV room	/	240Hz, 3	370 Hz		MSIV		

10. 3, 4 A - line

: 4 : 3)

/ MSIV room MSSV 3 MSSV disk guide가 bonnet type MSIV / 7 가 가 vortex shedding . / , MSIV / MSIV room / 가 , disk guide가 bonnet type disk

가 , disk guide가 type disk가

MCI	7	95-99%	325Hz	Z	/	MSSV			
MSIV	V			•					
4.									
(1) 98	8		М	SIV room					
	/								
(2)		100%		가		,		가	
М	SSV	MSIV		95%		9	9%		
(3)			95%	,	MSSV	vortex	shedding	7	
24	45Hz		7F MSIV	5		Vortex	Sheading	- 95~99%	
_	MS	IV	1 1.201			vortex sh	nedding	가	
	325Hz			. , 99%	6	MSSV	V	. 37	70Hz
		가 MS	SIV						
(4)	MS	IVフト	4	3	/	가		disk	
	guide	beam		. V	alve disk		가	disk	
						4		disk	
			가			, disk			
			가		•				
(5)		MI	Г	"				[5]"	
						,			
(6)					vote	x shedding			
								가	

- 1. M.P. Norton, Fundamentals of Noise and Vibration Analysis for Engineers, 1989, Cambridge University Press, Chapter 7.
- W. M. Jungowski, K. K. Botros and W. Studzinski, "Cylindrical Side-Branch as Tone Generator", 1989, Journal of Sound and Vibration 131(2), 265-285.
- 3. D. Rockwell, "Osillations of Impinging Shear Layers", 1983, American Institute of Aeronautics and Astronautics Journal 21, 645-664.
- 4. L. E. Kinsler, "Fundamentals of Acoustics", 1982, John Wiley and Sons, Chapter 10.

•

 "A Methodology Development for the Control of Fluid Induced Vibration", 1999, KEPRI and MIT