The Characteristics of Fission Products in Dry Stored Spent Fuel

Abstract

For a safe storage of spent nuclear fuel, the physical and chemical properties obtained from irradiated nuclear fuel are needed. An analysis on irradiated fuel from Kori-2 was performed by Shielded EPMA installed in IMEF/KAERI. The fuel has many fission gas bubbles and interlinkages on grain surfaces and boundaries, but doesn't show any metallic precipitates. The results also show that Ru and Nd are richer than other fission elements.

2000

I.

.

4

.

. ,

		, 가	
3.2	가		
[6].			
+ : Sr, Zr, Nb	, Y, La, Ce, Pr, Nd, Pm, Sm		
+ : Mo, Tc, Ru, Rh, Pd	: Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sb, Te		
+ : Ba, Zr, Nb, Mo, (Rl	b, Cs, Te)		
+ : Kr, Xe, Br, I, (Rb, Cs, T	'e)		
Mo-Ru-Rh-Pd	,	[7]	
		71	
, 가	,	>r	
. 20			
0.000	Ru, Pd, Mo, Rh가	0.450, 0.000,	
0.222 0.010 at % ,	0.245 + 0/ 7.	Nd, Y, Sr,	
La Ce 0.416, 0.064, 0.024, 0.095	0.245 at % . Zr 0.235 at % 7		
. Ba	Barium-Zirconate type	perovskite	
$(BaZrO_3)$ 7		[7].	
BaZrO ₃	,		
0.200 at%			

Schaner [4] Yagnik [5]

5

,

U₄O₉ acicular precipitate

.

4.

•

Mo-Ru-Rh-Pd Ru Nd가 가

,

- [1] J.Cobos, et al., J. Alloys and Compounds 271-273 (1998) 610-615.
- [2] T. Muromura, et al., J. Nucl, Mater. 151 (1988) 318-326.

,

- [3] T. Adachi, et al., J. Nucl, Mater. 160 (1988) 81-87.
- [4] B. Schaner, J. Nucl. Mater. 2(1960) 110.

T

- [5] Suresh K. Yagnik, et al. J. Nucl, Mater. 270 (1999) 65.
- [6] P.G.Lucuta, et al., Proc. 2nd Int. Conf. on CANDU Fuel, CNS, Toronto, 1989.
- [7] P.G.Lucuta, et al., J. Nucl, Mater. 178 (1991) 48.

	Atomic %	
Ru	0.450	0.064
Pd	0.000	0.000
Мо	0.222	0.094
Rh	0.010	0.031
Zr	0.235	0.108
Ba	0.200	0.165
Y	0.064	0.064
Sr	0.024	0.041
Nd	0.416	0.101
La	0.095	0.099
Се	0.245	0.148

X1000

X1000

