Proceedings of the Korean Nuclear Society Spring Meeting Kori, Korea, May 2000

ROP Analysis of a CANDU 6 Reactor with DUPIC Fuel

Chang Joon Jeong, Jee Won Park and Hangbok ChoiKorea Atomic Energy Research InstituteP.O. Box 105, Yusong, Taejon, 305-600 Korea

ABSTRACT

The regional overpower protection (ROP) system was assessed for a CANDU 6 reactor with the DUPIC fuel, including the validation of the WIMS/RFSP/ROVER-F code system used for the estimation of ROP trip setpoint. For the standard natural uranium core, the ROP trip setpoint was estimated to be 122.9%, while it was 121.8% when estimated by the current design code. The validation calculation has shown that it is appropriate to use the WIMS/RFSP/ROVER-F code system for ROP system analysis of the CANDU 6 core. For the DUPIC core, the ROP trip setpoint was estimated to be 123.4%, which is almost the same as that of the standard natural uranium core. This study has shown that the DUPIC fuel does not hurt the current ROP trip setpoint margin designed for natural uranium CANDU 6 reactors.

1. INTRODUCTION

In CANDU reactors, the Regional Overpower Protection Trip (ROPT) systems protect the reactor against overpowers in the core, whether due to a localized peaking within the core or a general increase in core power levels. The general design requirements for the ROPT systems are summarized in Ref. 1. There are two ROPT systems - one for each of the two fast-acting shutdown systems (SDS's). Each ROPT system consists of a number of fast-responding self-powered flux detectors, suitably distributed throughout the core within vertical or horizontal assemblies. The SDS1 ROPT detectors are located in some of the 26 vertical assemblies, which are shared with other flux detectors used for reactivity control and flux mapping. The

SDS2 ROPT detectors are located in seven horizontal assemblies. Each ROPT detector has a pre-set trip setpoint and each SDS is connected to three logic channels. The reactor trip occurs when two channels out of three are tripped (see Figs. 1 and 2).

Previous study [2] has shown that the ROP trip setpoint of DUPIC core is comparable to that of natural uranium core. In this study, the calculation cases are extended to 232 cases, which are the whole design-base cases for Wolsong-1 ROP analysis. The cross-sections were produced by WIMS-AECL [Ref. 3] and POWDERPUFS-V (PPV) [Ref. 4] for DUPIC and natural uranium fuel, respectively. The flux shape and detector response were generated by RFSP [Ref. 5] and the critical channel powers (CCPs) were calculated by NUCIRC [Ref. 6]. Finally ROVER-F [Ref. 7] was used for ROP trip setpoint calculation.

In Section 2, data generation procedures are described. The validation calculation of the WIMS/RFSP/ROVER system is performed in Sec.3. The trip setpoint for the DUPIC fuel core is calculated in Sec. 4. Finally summary and conclusion are given in Sec. 5.

2. DATA GENERATION PROCEDURE

2.1 RFSP Physics Calculations

The RFSP physics calculations are performed to obtain flux shapes and channel powers. Then, the bundle powers are used in CCP calculations. The physics calculations are performed for 232 design-base cases [8] except for four cases of startup after long shutdown and ten cases of harmonic top-to-bottom and side-to-side tilt. The detailed design-base case is described in Ref. 8. The thermal neutron flux calculated for each case is processed to obtain the ROP detector response at each detector location. This processing is performed by INTREP module in the RFSP code.

2.2 CCP Calculations

The design criterion for the ROPT system is to prevent damage to the channel - specifically, the onset of intermittent dryout (OID). The CCP is calculated for each of the design-base cases. The detailed methodology and calculation procedures are described in Ref. 9.

2.3 Ripple Data Generation

The probabilistic assessment uses a set of rippled power distributions, representative of the ripples expected in the operating reactor. The ripples used in this assessment were obtained from 600-FPD refueling simulation. A total 121 ripples were obtained, at 5-day interval.

3. VALIDATION OF WIMS/RFSP/ROVER SYSTEM

For ROP analysis of the DUPIC core, a code system WIMS/RFSP/ROVER-F should be used instead of PPV/RFSP/ROVER-F, which is used for standard 37-element fuel core. Therefore, it is necessary to assess the WIMS/RFSP/ROVER-F code system for ROP analysis of CANDU reactors. The validation calculation was performed for the standard 37-element natural uranium core. For this study, 26 limiting cases, shown in Table 1, were chosen based on the ROP analysis results of Wolsong-1 plant [Ref. 6]. Table 2 shows the uncertainty data used for the ROP calculations.

The trip setpoint estimated by WIMS/RFSP/ROVWER-F system is 122.9%, while the setpoint estimated by PPV/RFSP/ROVER-F is 121.8%. The difference between two code systems is around 1%, which indicates that the WIMS/RFSP/ROVER-F system has validity to be used for ROP trip setpoint analysis of the CANDU 6 core.

4. ROP CALCULATION FOR DUPIC CORE

4.1 Trip Setpoint

The trip setpoint was calculated for the DUPIC fuel core based on a 98% 2-out of-2 trip probability over 232 design-base cases. The trip setpoint of the DUPIC fuel core was estimated to be 123.4%, which is slightly higher than the current ROP setpoint of the 37-element natural uranium core in Wolsong-1 (121.8%). Therefore, it is expected that the loading of the DUPIC fuel in the CANDU6 reactor does not hurt the ROP trip setpoint adversely.

4.2 Single Detector Failure

The trip setpoint was evaluated for the case of a single detector failure, which may change the trip setpoint. Table 2 shows the trip setpoint change for the single detector failure case. It can be seen that the trip setpoint does not change in case of SDS1 detector failure, but the maximum decrease in the trip setpoint is around 11% in case of SDS2 detector failures.

4.3 REFORM Calculation

REFORM is a process that attempts to improve ROP margin by changing the reference power shape of the core. The REFORM process follows several steps. First the excess margin (the amount by which the margin to dryout exceeds the margin to trip) is determined for each channel in the core. The channel power in each fuel channel is then adjusted, in small increments, to minimize this excess margin. Since overall reactor power is to be conserved, the revised power shape is normalized. This has an effect of adding powers to the channels with excess margin and the removing powers from channels with small excess margins. The result is that, in the most limiting channels, the channel power is decreased, leading to a larger margin to dryout and increased permissible ROP setpoints.

In order to investigate the possibility of increasing the trip setpoint in the DUPIC fuel core, REFORM calculation has been performed. The calculation result shows that the trip setpoint increases to 125.7%, which is 3% higher than the normal trip setpoint. However, this is a theoretical improvement, which needs to be checked against operational considerations. The trip margin improvement indicated by the ROVER-F code is not currently required.

5. SUMMARY

For the DUPIC fuel core, ROP system has been assessed using the ROVER-F input data produced by WIMS/RFSP system, CCP data by NUCIRC, and the ripple data by 600-FPD refueling simulations.

The results have shown that the ROP trip setpoint of the DUPIC core is almost the same as that of the standard natural uranium core. When necessary, the trip setpoint could be increased by 3% through the REFORM process of the channel power distribution of the DUPIC core.

Consequently, it is expected that the loading of the DUPIC fuel in a CANDU 6 reactor does not show any adverse effects on ROP trip setpoint.

ACKNOWLEDGEMENT

This work has been carried out under the Nuclear Research and Development Program of Korea Ministry of Science and Technology.

REFERENCES

- 1. C.M. Bailey and F.A.R. Laratta, "Design and Assessment of the Neutron Overpower Trips in the 600 MWe CANDU-PHW Reactors", TDAI-315, AECL, 1982.
- C. J. Jeong, J. W. Park and J. Pitre, "Preliminary ROP Assessment for CANDU-6 with DUPIC Fuel", *Proceedings of the Korean Nuclear Society Spring Meeting*, Pohang, Korea, May 1999
- J.V. Donnelly, "WIMS-CRNL: A User's Manual for the Chalk River Version of WIMS", AECL-8955, AECL, 1986.
- 4. D. B. Miller and E.S.Y. Tin, "POWDERPUFS-V User's Manual", TDAI-31 Par 2, AECL, 1976.
- D. A. Jenkins and B. Rouben, "Reactor Fuelling Simulation Program RFSP: User;s Manual for Microcomputer Version", TTR-321, AECL, 1991.
- M. R. Soulard et al., "NUCIRC Code validation; Versions: NUCIRC-MOD 1.501, NUCIRC-MOD 1.503", TTR-301, AECL, 1991.
- 7. J. Pitre, "ROVER-F Manual", TTR-605 (Rev. 1), AECL, 1999.
- F.A.R. Laratta et al., "Design and Assessment of the Replacement ROPT System for Wolsong-1", TTR-289 Part 1 (W1), AECL, 1995.
- 9. J. W. Park et al., "Compatibility Analysis of DUPIC Fuel (Part 4) Thermal-Hydraulic Analysis", KAERI, To be issued in 2000.

Case	Description		
1	SSSC50 STEASTATE WITH S.C.*		
37	D14C50 ZONE DRAIN 14 FROM 50%		
39	D02C80 ZONE DRAIN 02 FROM 80%		
42	D05C80 ZONE DRAIN 05 FROM 80%		
44	D07C80 ZONE DRAIN 07 FROM 80%		
46	D09C80 ZONE DRAIN 09 FROM 80%		
49	D12C80 ZONE DRAIN 12 FROM 80%		
51	D14C80 ZONE DRAIN 14 FROM 80%		
53	D02N50 ZONE DRAIN 02 FROM 50%		
58	D07N50 ZONE DRAIN 07 FROM 50%		
60	D09N50 ZONE DRAIN 09 FROM 50%		
65	D14N50 ZONE DRAIN 14 FROM 50%		
114	MCAN2H MCA 1ST FI & 2ND HI		
122	ZTSFSE 1ST AZIMUTHAL SIDE/SIDE		
123	ZTSESF 1ST AZIMUTHAL SIDE/SIDE		
130	ZT2A01 2ND AZIMUTHAL 135,315 HI		
131	T2A02 2ND AZIMUTHAL 045,225 HI		
152	SSSD03 BANK 7 FULL-IN/NO TIMESTEP		
171	SA4403 BANK 7 FULL-IN		
173	SA4405 BANK 6 FULL-IN		
174	SA4406 BANK 6 FULL-IN/Xe @ 4.3 MIN		
177	SA4409 BANK 4 FULL-IN		
178	SA4410 BANK 4 FULL-IN/Xe @ 3.9 MIN		
195	SBCK05 BANK 2 OUT/Xe @ 18.3 MIN		
196	SBCK06 BANK 3 OUT		
197	SBCK07 BANK 3 OUT/Xe @ 28.5 MIN		
222	ABHO01 STARTUP BANK 7 HALF-IN		

Table 1 Case Set for Natural Uranium Core Analysis

* Reference Case

Uncertainty	Value (%)	
Detector Random	±2.60	
Channel Random	±1.49	
Common Random	±4.18	
Bias	+0.14	

Table 2 Uncertainty Data for Natural Uranium Core Analysis

Case		Description	Trip Pro	Trip Probability	
		-	SDS1	SDS2	
42	D05C80	ZONE DRAIN 05 FROM 80%	.9929	.9559	
173	SA4405	BANK 6 FULL-IN	.9615	.9605	
49	D12C80	ZONE DRAIN 12 FROM 80%	.9967	.9642	
114	MCAN2H	MCA 1ST FI & 2ND HI	.9918	.9647	
152	SSSD03	BANK 7 FULL-IN/NO TIMESTEP	.9976	.9734	
178	SA4410	BANK 4 FULL-IN/Xe @ 3.9 MIN	.9959	.9748	
44	D07C80	ZONE DRAIN 07 FROM 80%	.9953	.9782	
51	D14C80	ZONE DRAIN 14 FROM 80%	.9929	.9859	
122	ZTSFSE	1ST AZIMUTHAL SIDE/SIDE	.9937	.9909	
39	D02C80	ZONE DRAIN 02 FROM 80%	.9994	.9916	
171	SA4403	BANK 7 FULL-IN	.9992	.9917	
196	SBCK06	BANK 3 OUT	.9991	.9918	
123	ZTSESF	1ST AZIMUTHAL SIDE/SIDE	.9968	.9933	
46	D09C80	ZONE DRAIN 09 FROM 80%	.9973	.9936	
197	SBCK07	BANK 3 OUT/Xe @ 28.5 MIN	.9990	.9940	
131	ZT2A02	2ND AZIMUTHAL 045,225 HI	.9951	.9950	
58	D07N50	ZONE DRAIN 07 FROM 50%	.9977	.9950	
177	SA4409	BANK 4 FULL-IN	.9973	.9952	
130	ZT2A01	2ND AZIMUTHAL 135,315 HI	.9985	.9958	
65	D14N50	ZONE DRAIN 14 FROM 50%	.9968	.9960	
53	D02N50	ZONE DRAIN 02 FROM 50%	. 9993	.9967	
60	D09N50	ZONE DRAIN 09 FROM 50%	.9987	.9972	
37	D14C50	ZONE DRAIN 14 FROM 50%	.9984	.9975	
222	ABHO01	STARTUP BANK 7 HALF-IN	1.0000	.9976	
195	SBCK05	BANK 2 OUT/Xe @ 18.3 MIN	.9997	.9980	

Table 3 ROP Calculation Results of PPV/RFSP/ROVER System

ROP Trip Setpoint = 121.77

Table 4 ROP Calculation Results of WIMS/RFSP/ROVER System

Case		Description	Trip Probability	
		-	SDS1	SDS2
1 1	07090	TONE DDAIN 07 EDOM 00%	0040	0701
44	DU7C80	ZONE DRAIN U/ FROM 80%	.9942	.9701
20	D14C80	ZONE DRAIN 14 FROM 80%	.9893	.9800
39		ZONE DRAIN UZ FROM 80%	.9987	.9802
102	SSSD03	BANK / FULL-IN/NU TIMESIEP	.9998	.9806
171	ZISESF	ISI AZIMUIHAL SIDE/SIDE	.9897	.9812
100	SA4403	BANK / FULL-IN	.9997	.9832
122	ZTSFSE	IST AZIMUTHAL SIDE/SIDE	.9893	.9841
46	D09C80	ZONE DRAIN U9 FROM 80%	.9925	.98/4
130	Z12A01	2ND AZIMUTHAL 135,315 HI	.9962	.9890
114	MCAN2H	MCA IST FI & 2ND HI	. 9988	.9897
53	D02N50	ZONE DRAIN 02 FROM 50%	.9983	.9915
131	ZT2A02	2ND AZIMUTHAL 045,225 HI	.9916	.9917
58	D07N50	ZONE DRAIN 07 FROM 50%	.9967	.9919
60	D09N50	ZONE DRAIN 09 FROM 50%	.9964	.9923
65	D14N50	ZONE DRAIN 14 FROM 50%	.9955	.9942
222	ABHO01	STARTUP BANK 7 HALF-IN	1.0000	.9946
42	D05C80	ZONE DRAIN 05 FROM 80%	.9995	.9948
49	D12C80	ZONE DRAIN 12 FROM 80%	.9998	.9961
37	D14C50	ZONE DRAIN 14 FROM 50%	.9977	.9964
196	SBCK06	BANK 3 OUT	.9997	.9966
197	SBCK07	BANK 3 OUT/Xe @ 28.5 MIN	.9995	.9967
177	SA4409	BANK 4 FULL-IN	.9991	.9980
178	SA4410	BANK 4 FULL-IN/Xe @ 3.9 MIN	.9992	.9980
195	SBCK05	BANK 2 OUT/Xe @ 18.3 MIN	.9998	.9982
173	SA4405	BANK 6 FULL-IN	.9991	.9983

ROP Trip Setpoint = 122.90

Uncertainty	Value (%)
Detector Random	±2.60
Channel Random	±1.97
Common Random	±4.18
Bias	+0.14

Table 5 Uncertainty Data for DUPIC Core Analysis

Table 6 ROP Calculation Results of DUPIC Core

Case		Description	Trip Pro	Trip Probability	
			SDS1	SDS2	
49	D12C80	ZONE DRAIN 12 FROM 80%	.9984	9749	
42	D05C80	ZONE DRAIN 05 FROM 80%	.9966	.9751	
112	MCAN1H	MCA 1ST BANK HALF-IN	.9993	.9785	
44	D07C80	ZONE DRAIN 07 FROM 80%	.9982	.9859	
39	D02C80	ZONE DRAIN 02 FROM 80%	.9996	.9900	
108	MCAC1H	MCA 1ST BANK HALF-IN	.9993	.9908	
46	D09C80	ZONE DRAIN 09 FROM 80%	.9968	.9918	
51	D14C80	ZONE DRAIN 14 FROM 80%	.9965	.9919	
114	MCAN2H	MCA 1ST FI & 2ND HI	.9951	.9944	
123	ZTSESF	1ST AZIMUTHAL SIDE/SIDE	.9976	.9952	
115	MCAN2F	MCA 1ST FI & 2ND FI	.9954	.9997	
110	MCAC2H	MCA 1ST FI & 2ND HI	.9972	.9955	
126	ZTT045	1ST AZIMUTHAL TOP AT 045	.9992	.9957	
121	ZT1ABT	1ST AZIMUTHAL BOTTOM/TOP	.9957	.9993	
129	ZTT315	1ST AZIMUTHAL TOP AT 315	.9959	.9986	
122	ZTSFSE	1ST AZIMUTHAL SIDE/SIDE	.9974	.9962	
120	ZT1ATB	1ST AZIMUTHAL TOB/BOTTOM	.9997	.9965	
38	D01C80	ZONE DRAIN 01 FROM 80%	.9974	.9967	
50	D13C80	ZONE DRAIN 13 FROM 80%	.9977	.9968	
128	ZTT225	1ST AZIMUTHAL TOP AT 225	.9968	.9978	
130	ZT2A01	2ND AZIMUTHAL 135,315 HI	.9990	.9969	
53	D02N50	ZONE DRAIN 02 FROM 50%	.9995	.9972	
60	D09N50	ZONE DRAIN 09 FROM 50%	.9988	.9972	
45	D08C80	ZONE DRAIN 08 FROM 80%	.9974	.9986	
127	ZTT135	1ST AZIMUTHAL TOP AT 135	.9990	.9975	

SDS1 Detector		SDS2 Detector		
Detector	Setpoint	Detector	Setpoint	
1D	1.2336	1G	1.2336	
2D	1.2336	2G	1.2226	
3D	1.2336	3G	1.2334	
4D	1.2336	4G	1.2332	
5D	1.2336	5G	1.2336	
6D	1.2336	6G	1.2336	
7D	1.2336	7G	1.2100	
8D	1.2336	8G	1.2202	
9D	1.2336			
10D	1.2336			
11D	1.2254			
12D	1.2336			
1E	1.2159	1H	1.2332	
2E	1.2336	2H	1.2312	
3E	1.2336	3Н	1.2165	
4E	1.2336	4H	1.2111	
5E	1.2336	5H	1.2323	
6E	1.2336	6H	1.2336	
7E	1.2336	7H	1.1204	
8E	1.2336	8H	1.2002	
9E	1.2336			
10E	1.2336			
11E	1.2336			
1F	1.2336	1 J	1.2333	
2F	1.2336	2Ј	1.2326	
3F	1.2336	3J	1.2215	
4F	1.2336	4 J	1.1689	
5F	1.2336	5J	1.2336	
6F	1.2336	бJ	1.2336	
7F	1.2336	7J	1.1947	
8F	1.2336	8J	1.1960	
9F	1.2336			
10F	1.2336			
11F	1.2336			

 Table 7 Trip Setpoint for Single Detector Failure

Fig.1 ROP Trip Logic for Shutdown System No. 1

`

Fig.2 ROP Trip Logic for Shutdown System No. 2