Experimental Study on CHF at Flow Transient in Vertical Annulus with Axial Heat Flux Distributions

Abstract

An experimental study on critical heat flux (CHF) under flow transient modes has been performed for water flow in an non-uniformly heated vertical annulus under low-flow and a wide range of pressure conditions. The objectives of this study are to compare the flow transient CHF with steady-state CHF, and to investigate the effects of flow transient modes on the CHF. The flow transient modes are based on the flow coastdown curves of Kori 3/4 Nuclear Power Plant RCP (reactor coolant pump). The flow transient CHF experiment has been performed for three kinds of flow transient modes such as normal, fast and slow transients. Most of the CHFs occurred in the annular-mist flow regime and the possible CHF mechanism is thought to be liquid film dryout. For flow transient modes with smallest flow rate decrease (slow mode), the time-to-CHF is latest, but the critical mass fluxes at CHF conditions are smaller than those for the steady-state CHF data. However, the opposite trend has been observed for low pressure conditions.

•

1.

LOCA(Loss of Coolant Accident)

(Chang et al., 1998). .

(Quasi-Steady-State)

(Correction Factor) (Serizawa, 1983; Kataoka et al, 1983; Celta et al., 1987; Chang et al, 1989). , (, 1999; , 1999). (Symmetric Cosine Distribution)

. 가 3/4 Flow Coastdown . Flow Coastdown

2.

RCS Loop (Preheater), 1 (Circulating Pump), , 가 , 1999; (Steam/Water Separator), , (, 1999). , 가 Throttling 가 40 kW 1843 mm 가 2 . 가 K-Type 가 6 Sheath 0.5 mm 10 Step Cosine 가 가 . 3 3

650 550 kg/m²s 1300 rpm Burnout 80 % Burnout 가 가 가 가 110 K CHF가 4 3/4 Coastdown

가

가

T

Coas			•					
2040	tdown							
	, Fast	Slow	Nor	mal				
	フ	የት						
	. Slow			, F	ast Normal	l	4	
					,			
	가		,					
フ	ŀ		5		가			
						가	가	
가								
가			가 1	10 K				
	가	· 가						
			11	18				
-		(D _i)	: 9.53 mm					
-		(D ₀)	: 19.4 mm					
-	가	(L _H)	: 1843 mm					
-			: (10	Step Symm	etric Cosine	Distributio	n)	
-	(P))	: 0.55, 1.9, 5	.9, 9.9 MPa				
-		(G_{\circ})	: 550, 650 kg	g/m^2s				
-	((H _{in})	: 86.9, 212.3,	353.7 kJ/kg				
-		(Xc)) : 0.039 - 0.5	58				
			, ,			(Uncert	ainty)	
	(Data A	Acquisition S	, , System)	±0.3 %,	±1.5 %, 0.6	(Uncert % ±1	ainty) .0 %	
	(Data A	Acquisition S	, , System)	±0.3 %,	±1.5 %, 0.6	(Uncert % ±1	ainty) .0 %	
3.	(Data A	Acquisition S	, , System)	±0.3 %,	±1.5 %, 0.6	(Uncert % ±1	ainty) .0 %	
3.	(Data A	Acquisition S	, , System)	±0.3 %, _(Time-to-C	±1.5 %, 0.6	(Uncert % ±1	ainty) .0 %	
3.	(Data A	Acquisition S	, , System) , 가	±0.3 %, _(Time-to-C	±1.5 %, 0.6	(Uncert % ±1	ainty) .0 %	
3	(Data A	Acquisition S 	, , System) , 7ŀ CHF)	±0.3 %, _(Time-to-C	±1.5 %, 0.6	(Uncert % ±1	ainty) .0 %	
3. 	(Data A	Acquisition S 	, , System) , ٦ CHF)	±0.3 %, _(Time-to-C	±1.5 %, 0.6 <u>CHF)</u>	(Uncert % ±1 ア	ainty) .0 % Slow	
3. ア ア	(Data A	Acquisition S 	, , System) , 7ŀ CHF)	±0.3 %, _(Time-to-(±1.5 %, 0.6 <u>CHF)</u>	(Uncert % ±1 7	ainty) .0 % Slow	
3. 	(Data A	Acquisition S (Time-to- 7 ,	, , System) , 7ŀ CHF)	±0.3 %, _(Time-to-C	± 1.5 %, 0.6 <u>CHF)</u> , Slow	(Uncert % ±1 アト フト	ainty) .0 % Slow	
3. 	(Data A 5 Fast Fast	Acquisition S (Time-to- 7 , , 7	, , System) , 7ŀ CHF)	±0.3 %, _(Time_to_C ,	± 1.5 %, 0.6 <u>CHF)</u> , Slow 7	(Uncert % ±1 ア ア ア	ainty) .0 % Slow	
3. フト フト ,	(Data A Fast Fast	Acquisition S (Time-to- 7 , , , 7 }	, , , System) , 7 CHF) 7	±0.3 %, _(Time-to-C , ,	± 1.5 %, 0.6 <u>CHF</u>) , Slow 7)	(Uncert % ±1 가 가	ainty) .0 % Slow	
3. アト アト ,	(Data A 5 Fast Fast	Acquisition S (Time-to- 7 , , 7 , 7	, , , System) , 가 CHF)	±0.3 %, _(Time-to-(, , (± 1.5 %, 0.6 <u>CHF</u>) , Slow 7)	(Uncert % ± 1 가 가	ainty) .0 % Slow	
3. アト フト ,	(Data A Fast Fast	Acquisition S (Time-to- 7 , , , 7 ;	, , , System) , フト CHF) フト フト	±0.3 %, _(Time-to-O , , (± 1.5 %, 0.6 <u>CHF</u>) , Slow 7)	(Uncert % ±1 가 가	ainty) .0 % Slow	:
3. アト フト ,	(Data A 5 Fast Fast	Acquisition S (Time-to- 7 , , 7 , 7 ,	, , , System) , 가 CHF) 가 가	±0.3 %, _(Time-to-(, , (± 1.5 %, 0.6 <u>CHF</u>) , Slow 7)	(Uncert % ±1 アト フト	ainty) .0 % Slow	:
3. フト フト ,	(Data A Fast Fast	Acquisition S (Time-to- 7 , , , 7 , 7	, , , System) , 가 CHF) 가	±0.3 %, _(Time-to-O , , (± 1.5 %, 0.6 <u>CHF</u>) , Slow 7)	(Uncert % ±1 アト アト	ainty) .0 % Slow	
3. 	(Data A 5 Fast Fast 7	Acquisition S (Time-to- 7 , , 7 , , 7 ,	, , , System) , 가 CHF) 가 가	±0.3 %, _(Time-to-(, , (± 1.5 %, 0.6 <u>CHF</u>) , Slow 7)	(Uncert % ±1 アト フト	ainty) .0 % Slow	
3. 7 7 7 ,	(Data A Fast Fast 7	Acquisition S (Time-to- 7 , , , 7 , , 7 ;	, , , System) , 7 CHF)	± 0.3 %, (Time-to-(, (m ² s	± 1.5 %, 0.6 <u>CHF</u>) , Slow 7)	(Uncert % ± 1 가 가	ainty) .0 % Slow	:
3. 	(Data A 5 Fast Fast 7	Acquisition S (Time-to- 7 , , , 7 , ,	, , , System) , 7 に CHF)	± 0.3 %, (Time_to_(, , (m ² s	± 1.5 %, 0.6 <u>CHF</u>) , Slow 7)	(Uncert % ±1 ア ア ・ フ	ainty) .0 % Slow	
3. 71 71 ,	(Data A Fast Fast	Acquisition S (Time-to- 7 , , , , , ,	, , , System) , 7ŀ CHF)	± 0.3 %, (Time-to-(, (m ² s 7F	± 1.5 %, 0.6 <u>CHF</u>) , Slow 7)	(Uncert % ±1 ア ア ・ ア ・	ainty) .0 % Slow	:
3. 7 7 7 ,	(Data A Fast Fast 7	Acquisition S (Time-to- 7 , , , , , , ,	, , , System) , 7ŀ CHF)	± 0.3 %, (Time_to-(, , (m ² s 7	± 1.5 %, 0.6 <u>CHF</u>) , Slow フト)	(Uncert % ±1 ア ア ア ア ・ フ ・ 、 、 、 フ ・ 、 、 、 、 、 、 、 、 、 、 、 、	ainty) .0 % Slow	

	. ,		0.996	· ,
		가		
		·	,	
				,
		가	, <i>P</i> F 0.756 .	
			가	
	8 9		Mishima Ishii(1984)	
	Annular-Mist	t Flow Regime		
	71			
	. 1		,	
	L	iquid Film Dryout		
	10 11			
	10 11		71 71	
		·		-1
	,	가.	Slow 7	가
	가	, Fast	가 가	가
			(1000.	1000) 1
			(, 1999;	, 1999).
	,			
				FT ST
		,		
	가 Fast	가	フト ,	가
Slow	가			
12	~ 14			
12	~ 14	71		
		71		
	. ,			
		가 .	15 ~ 17	, 가
			가	
		,	•	
4.				
	가			
3/4		Coastdown		フト
ד וכ		Coastuowii	,	
		•		•
1)		가 Fast	가	,
	Slow	가		

T

Celtata G. P. et al. (1987), "CHF during flow rate, pressure and power transients in heated channels," ENEA Report RT/THEM/81/1.

Chang S. H. et al. (1989), "Transient effects modelling of critical heat flux," Nucl. Eng. Des., 113, 51.

Chang, S. H. and Baek, W. P. (1998), "Perspective on critical hat flux research for nuclear rectors," *Proc. of NTHA S98: First Korea-Japan Symposium on Nuclear Thermal Hydraulic and Safety*, Pusan, Korea, October 21-24.

Kataoka I. et al. (1983), "Transient boiling heat transfer under forced convection," Int. J. Heat Mass Transfer, 26.

Mishima, K. and Ishii, M. (1984), "Flow regime transition criteria for upward two-phase flow in vertical tubes." Int. J. Heat Mass Transfer, 27[5], 723-737.

Serizawa, A. (1983), "Theoretical prediction of maximum heat flux in power transient," Int. J. Heat Mass Transfer, 26, 921.

		G_{C_FT}/G_{C_ST} (-)			X c_f t/X c_s t (-)			
(kJ/kg)	(kPa)	Fast	Normal	Slow	Fast	Normal	Slow	
86.88	1882	0.82	0.84	0.95	1.28	1.22	1.07	
	5945	0.84	0.85	0.94	1.22	1.21	1.08	
212.27	552	1.02	0.92	1.04	0.98	1.16	0.98	
	1882	0.82	0.90	0.94	1.36	1.18	1.10	
	5945	0.87	0.90	0.93	1.21	1.15	1.09	
	9865	0.84	0.84	0.95	1.28	1.30	1.11	
353.66	552	1.01	1.02	1.13	1.03	0.98	0.76	
	1882	0.85	0.89	0.93	1.34	1.22	1.13	
	5945	0.85	0.89	0.96	1.29	1.19	1.06	
	9865	0.84	0.88	0.93	1.35	1.28	1.14	

1. RCS Loop

1.

L

I.

I

15.

L

