가

Preliminary Study on the Assessment of Environmental Risk for Transmutation Technology

abstract

Partitioning and Transmutation (P & T) technology was proposed as a means of reducing the long-term environmental risks from the radioactive wastes that require disposal and thus making it easier to site and license. Hence, it is very important to examine and evaluate P & T technology whether it can reduce such risks or environment and human health to employ nuclear energy for national energy program in Korea. This study evaluates the reduction of radioactive wastes inventory using P & T technology. New fuel cycle including reprocessing, transmutation and partitioning is assumed and calculated radiowaste inventories by detailed mass-flow analysis. Our prelimary results can highlight the facts that tend to increase or limit the desirability of P & T technology with respect to the national radiowaste disposal program.

1.

'00 '

가

•

가

가

가 . 가 . 가 . 가 가

2.

	, Partitioning 가	Transmutation
. ,		

	P&T		가	3			LWR
	, P&T		(Target	Assembly)	,	,	
ТА	가	[2].					•

P&T			P&T				가
,		. P&T	,	LWR			
	,	lodine	Technet	ium			
			,		가		
		,					
	,					electro-ref	ining
		P&T TA		base	matrix		

off-gas metal container

electro-refining , direct reduction

.

. , , 가 . electro-winning . A batch electro-refining , , polishing . Anode polishing 가 . Elector-refining electro-refining P&T anode polishing . , . Polishing LANL P&T

Electro-winning , electro-refining , , , P&T TA , 가 . reductive extraction .

. Electro-winning , , Grinding cutting

, , , TA ТΑ . . ΤA

ΤA . . Alloy fuel off-gas electro-refining . , . ΤA 가 - , , , , electro-winning P&T . .

Electro-winning reductive extraction , electro-refining . . . , , ΤA . ТΑ

, , . electro-winning

2.2 Box Flow Model

> P&T , P&T 가 4 4

. 3

,

가

. 56 가

Mass Flow Model

1 . 2 LANL .

neutronics 가

가 .

•

1. P&T

	P&T				
	Sp	ent fuel decladding	\boldsymbol{a}_{d}	0	0.003
	Dir	ect oxide reduction	$oldsymbol{a}_{_{\! O}}$	0	0.003
	Electro - refining	Waste	\boldsymbol{a}_{r}	0	0.003
		Impurity in U storage	b _r	0	0.003
		To anode polishing	g_r	3.30E-03	3.70E-03
		To electrowinning	e _r	0.996	0.99
	Anode polishing	Waste	\boldsymbol{a}_{a}	0.003	0.003
		Impurity in U storage	\boldsymbol{b}_{a}	0	0
		To electrowinning	r _a	0.997	0.994
	Electrowin ing	n Waste	a_{w}	0	0.003
		Impurity in U storage	\boldsymbol{b}_{w}	0	0.003
		Total	a_{l}	1.10E-05	0.018
가		Total	a_{2}	0	0.003
		Chopping	\boldsymbol{a}_{c}	0	3.00E-03
	Electrore fining	Waste	a_r	9.47E-06	9.47E-06
		To electrowinning	\boldsymbol{b}_r	0.0707	0.0707
		Electrowinning	a_{w}	0	0.003
		Total	\boldsymbol{a}_{3}	9.47E-06	0.00322

2.

	[1	
Pu238	0.01	Cm244	0.0	Am242	0.0
Pu239	0.47	Cm245	0.0	Am243	0.077
Pu240	0.138	Cm247	0.0	Am241	0.4
Pu241	0.19	Cm248	0.0	Tc99	0.168
Pu242	0.0174	Cm242	0.0	U238	0.06
		Cm243	0.0	Np237	0.385

•

:	가)	#1: spent	fuel	(),	,			
)	#2: HLW (High Level Wast	e)		,			
			HLW						
()		I	Pu	spent
fuel		99 %	가						
	-								
	Spent	Fuel			OR	IGEN2			

	fresh	fuel			3	
3		4	burnup	가		

3. 3.2%

	(g/MTHM)		(g/MTHM)
U-234	290.0	Со	1.0
U-235	3200.0	Ni	24.0
U-238	967710.0	Cu	1.0
Li	1.0	Zn	40.3
В	1.0	Мо	10.0
С	89.4	Ag	0.1
Ν	25.0	Cd	25.0
0	134454.0	In	2.0
F	10.7	Sn	4.0
Na	15.0	Gd	2.5
Cl	5.3	W	2.0
Ca	2.0	Pb	1.0
Fe	18.0	Bi	0.4

4.

()		
0-293.3	37.5MW/MTHM	11,000MWD/MTHM
293.3-399.3		
399.3-692.7	37.5MW/MTHM	22,000MWD/MTHM
692.7-798.7		
798.7-1092.0	37.5MW/MTHM	33,000MWD/MTHM
discharge 10		

5. LWR

Nuclides	Inventory	Half Life	Nuclides	Inventory	Half Life
	(g/MTU)	(year)		(g/MTU)	(year)

Cm246	1.018E-01	4.731E+03	Am241	3.254E+01	4.322E+02
Pu242	4.509E+02	3.869E+05	Np237	4.311E+02	2.140E+06
Am242m	7.460E-01	1.520E+02	U233	1.393E-03	1.585E+05
Pu238	1.314E+02	8.774E+01	Th229	6.173E-07	7.339E+03
U238	9.441E+05	4.468E+09	Cm244	2.390E+01	1.811E+01
U234	1.798E+02	2.445E+05	Pu240	2.307E+03	6.357E+03
Th230	1.419E-03	7.700E+04	U236	3.959E+03	2.341E+07
Ra226	2.169E-08	1.600E+03	Cs135	2.989E+02	2.300E+06
Cm243	4.090E-01	2.850E+01	I129	1.768E+02	1.570E+07
Am243	8.556E+01	7.380E+03	Sn126	2.735E+01	1.000E+05
Pu239	4.938E+03	2.406E+04	Pd107	2.176E+02	6.496E+06
U235	7.972E+03	7.038E+08	Tc 99	7.657E+02	2.130E+05
Pa231	3.281E-04	3.277E+04	Nb 94	7.486E-04	2.030E+04
Ac227	5.749E-09	2.177E+01	Zr 93	7.174E+02	1.530E+06
Cm245	8.539E-01	8.499E+03	Se 79	5.864E+00	6.496E+04
Pu241	1.218E+03	1.440E+01	C 14	2.625E-05	5.729E+03

3.

#1 , 5

,

6

•

	6.	(#1)
	((g/MTU)
Pu238	1.29E-01	5.21E+01
Pu239	5.37E-02	5.00E+01
Pu240	1.40E-01	9.51E+01
Pu241	3.04E-02	2.16E+01
Pu242	2.41E-01	1.18E+02
Cm244	4.94E+02	4.94E+02
Cm245	8.53E-06	8.53E-06
Cm247	8.56E+01	8.56E+01
Cm248	1.73E-03	1.73E-03
Cm242	3.21E-01	3.21E-01
Cm243	1.63E+01	1.63E+01
Am242	8.53E-01	8.53E-01
Am243	1.03E-07	6.54E-05
Am241	6.30E-10	5.41E-07
Tc99	3.61E-02	2.52E+01
U238	1.40E+00	8.63E+02
Np237	6.76E-03	5.71E+00

P&T

U Pu 99% 가

. 7

	7.	(#2)
	(g/MTU)		
		T	
Pu238	1.28E-03		5.21E-01
Pu239	5.37E-04		5.00E-01
Pu240	1.40E-03		9.51E-01
Pu241	3.04E-04		2.16E-01
Pu242	2.41E-03		1.18E+00
Cm244	4.94E+02		4.94E+02
Cm245	8.53E-06		8.53E-06
Cm247	8.56E+01		8.56E+01
Cm248	1.73E-03		1.73E-03
Cm242	3.21E-01		3.21E-01
Cm243	1.63E+01		1.63E+01
Am242	8.53E-01		8.53E-01
Am243	1.03E-07		6.54E-05
Am241	6.30E-10		5.41E-07
Tc99	3.61E-02		2.52E+01
U238	1.40E+00		8.63E+02
Np237	6.76E-03		5.71E+00

•

7 8

#1 #2

P&T

, P&T

.

.

LWR

LWR , 가 (P&T #2) P&T (#1) HLW P&T P&T . 가 가

,

.

.

.

HLW

가 P&T 가 .

가가 가 가 • 4.

가 가 , ,

, , , . P-T ,

가 . . (event) (process) . 가

- [1] L. D. Ramspott et al., Impacts of new developments in partitioning and transmutation on the disposal in a mined geological respository, Feb. 1992
- [2] J. Ahn et al., Impacts of waste Transmutation on Resository Performance, UCBNE-4225, june 1999