Wire

Development of Pressure Drop Calculation Modules for a Wire-Wrapped LMR Subassembly

150

5

. KALIMER

0.13 MPa

Abstract

Pressure drop calculation modules for a wire-wrapped LMR subassembly has been developed. In this study, pressure drop modules for inlet hole, lower part and upper part of a wire-wrapped LMR subassembly was developed using simple formulas of sudden expansion and sudden contraction. A case calculation study was done using design data of a KALIMER driver fuel subassembly. And the total pressure drop in the driver fuel subassembly, except for the bundle part, was calculated as 0.13 MPa, which is in the reasonable pressure drop range. The developed modules will be integrated in the total subassembly pressure drop calculation code with further improvements.

'2000

,

HT 9

,

.

, CRT

/

가 .[1]

,

,

.

,

,

.

, 가 • , •

.

(Chiu-Rosenhow-Todreas) , CT (Cheng & Todreas)

,

,

[2]

.

2.

.

Novendstern

,

KALIMER

1. , ,

2

•

.

(Re)

$$Re = \frac{\rho u_{avg} D_{e}}{\mu}$$
(1)

$$: (kg/m^{3})$$

$$u_{avg} : (m/sec)$$

$$D_{e} : 7 \dagger (m)$$

$$\mu : (kg/m-sec)$$

$$7 \dagger n 7 \dagger$$

가

,

,

•

 $\Delta P_{\text{total}} = \frac{\rho_{\text{avg}}}{2} \sum_{i=1}^{n} [(K_i + f_i) v_i^2]$ (2) (kg/m^3) avg : K_{i} : \mathbf{f}_{i} : $v_{\rm i}$: (m/sec)

2 , (Re) , • (Re)

Idelchik [3] [4,5] , • .

3.2

.

,

가 . 3 7 Re > 10^4 가 ,

Idelchik \mathbf{K}_{i} .[3] (3)

$$K_{i} = f(b/D_{0}, f')$$
 (3)

$$f' = (\frac{b D_1}{\pi D_0^2/4})$$

가

.

Kd Ku

.

. (2)

$$K_{D} = \left[\left(\frac{D_{3}}{D_{2}} \right)^{2} - 1 \right]^{2}$$
(4)

$$K_{U} = \zeta \left(1 - \frac{A_{4}}{A_{3}}\right), \qquad 0.5$$
(5)

4 5 D 7 $1 < D_3/D_2 < 5$, A

, 가 3,500 , (uniform velocity distribution) 가 , K 6

$$K = \frac{\Delta P}{\rho v^2 / 2} = K_{loc} + K_{fr} = K_{loc} + \frac{K'_{fr}}{n^2}$$
(6)

$$K_{loc} = (1 - \frac{A_3}{A_2})^2 :$$

$$K'_{fr} = \frac{\Delta P_{fr}}{\rho v_i^2 / 2} = \lambda \frac{L_1}{D_3} :$$

$$\lambda = f (Re)$$

$$n :$$

, (Re>10,000)

.

.

7

$$K = 0.5 \left(1 - \frac{A_4}{A_3}\right)^{0.75} + \zeta_{fr}$$
(7)
$$\zeta_{fr} = \lambda \frac{L_2}{D_4}, \quad \lambda = f (Re)$$

4

•

.

		,				가
가				. ,	,	,
	가		,			
5	8	9				

Κі,

$$K_{i} = \left[\left(\frac{D_{duct} - D_{total}}{D_{duct}} \right)^{2} - 1 \right]^{2}$$

$$D_{total} : 7 + 7 +$$

$$D_{duct} : 7 +$$

$$K_{o},$$

$$K_{o} = \zeta \left(1 - \frac{A_{duct} - A_{total}}{A_{duct}}\right), \qquad 0.5 \qquad (9)$$

$$A_{total} :$$

$$A_{duct} :$$

4.

KALIMER

		1	
386.2 。 C	586 。 C	,	
38 kg/sec			2

0.01877 MPa	0.05526 MPa	,
-------------	-------------	---

, . , , 0.

, , , , (Re)

[4,5]

KALIMER

.

.

.

5.

, 0.13 MPa

0.05265 MPa,

0.13 MPa .

· ,

Idelchik [3] [4,5] .

,

,

.

- [2] A. E. Waltar and A. B. Reynolds, Fast Breeder Reactors, Pergamon Press (1981).
- [3] I. E. Idelchik, Greta R. Malyavskaya, et al., Handbook of Hydraulic Resistance, Hemisphere Publishing Corp. (1986).
- [4] Kyong-Won Seo, et al., "An Experimental Investigation of Side-Orifice Effect on Pressure Drop for Single-Phase Flow" Proceedings of the KNS (1996).
- [5] , " ", KAERI/CM-103/96, 1996.

1. KALIMER

Input parameters	Input Values
Mass flow rate of Soduim (kg/sec)	38.0
Inlet Temperature of Sodium ()	386.2
Outlet Temperature of Sodium ()	530.0
Number of Inlet Nozzle	6
Average width of Inlet Nozzle (m)	0.0245
Average height of Inlet Nozzle (m)	0.0491
Diameter of Inlet stream section (m)	0.08
Diameter of Lower Part (m)	0.1496
Diameter of Uppert Part (m)	0.12
Length of Upper Part (m)	0.3
Diameter of Fuel Pin (m)	0.0074
Number of Pins per Assembly	271

2. KALIMER

Physical Properties of	Temp. ()		Density (kg/m ³)		Viscosity (kg/m \cdot sec)	
Sodium (Average)	458.1		819.628		2.566E-4	
	Velocity (m/sec)	Re		K		P (MPa)
Inlet Nozzle Part	6.10	6.10 5.456E5		3.453		0.05265
Lower Part	9.22	2.360E6		0.538		0.01877
Upper Part	2.64	1.260E6		19.38		0.05526
Fuel Bundle Inlet	2.64	1.260E6		0.223		0.00064
Fuel Bundle Outlet	5.62	1.	840E6	0.282		0.00365
Total Pressure Drop	-				0.13095	