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Fracture Behavior Analysis of a Crack in Nuclear Piping

Considering Constraint Effects
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Abstract

Currently, the integrity of nuclear piping with an embedded crack is evaluated based on elastic-plastic
fracture mechanics which uses J-integral. This method assumes that the J-integral uniquely characterizes
the crack-tip stress-strain field of a structure. However, it has been revealed that the J-integral is not
sufficient to characterize the crack-tip field under low levels of constraint for an accurate integrity
evaluation. Therefore, the quantitative evaluation of crack-tip constraint on a full-scale pipe should be
performed. The objective of this paper is to refine the piping integrity evaluation by quantifying the level
of crack tip constraint. For this purpose, finite element analyses were performed to quantify the level of
congtraint for standard fracture toughness specimens and a wide-plate. Wide-plate tests and J tests using
1T-CT specimen were also performed to investigate the effect of different constraint between a wide-
plate and standard specimens. In conclusion, it was proven that the integrity evaluation based on standard
specimens could be overly conservative. A big difference of J-integral values was also observed between
standard specimens and a wide-plate which measured at the crack initiation.
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Fig. 2 A schematic illustration of the O-stress
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Fig. 3 Two-dimensiona mesh and boundary
conditions for an SENB specimen

Fig. 4 Two-dimensiona mesh and boundary
conditions for aCT specimen
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Fig. 5 Two-dimensiona mesh and boundary
conditions for a wide-plate specimen
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Fig. 7 J-Q stress field for an SENB specimen
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Fig. 13 The configuration of awide-plate specimen
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