2000

ABSTRACT

Criticality safety analysis for mockup facility has been carried out using the validated code system, SCALE4.4 CSAS6 module. Benchmark calculations for SCALE4.4 CSAS6 module have been performed for 31 UO_2 fuel, 15 MOX fuel and 10 metal material criticality experimental sets. Calculation biases for the above mentioned experimental sets are revealed to be 0.00982, 0.00580 and 0.02347, respectively. When CSAS6 is applied to the criticality safety analysis for the mockup facility in which several kinds of nuclear material components are included, the maximum calculation bias of 0.02347 has been taken from the conservative point of view. Criticality safety analyses for the mockup facility at normal and hypothetical accident-conditions have been carried out. The maximum k_{eff} at the normal condition seems to be 0.28356 well below than the subcritical limit, k_{eff} =0.95. For the hypothetical accident-condition that the nuclear material leaks out of container and spreads or lumps on the floor, and then water is filled in the empty space of nuclear material, it appears that the maximum k_{eff} value is 0.94247, being lower than the subcritical limit.

1. mockup . 7ł mockup UO₂ , U₃O₈
, , . 7ł 1 4 2

mockup SCALE4.4 CSAS6 , mockup 가 . 가 가

.

, 가, .

2.

가. SCALE4.4

가 Mockup SCALE4.4 CSAS6[1] . CSAS6 가 . BONAMI[2] NITAWL-II[3] , BONAMI NITAWL-II . NITAWL-II AMPX master library 가 . XSDRNPM[4] 1 working library . KENO-VI[5] 3

. CSAS6 44 238 . 44 ENDF/B-V 238 ENDF/B-VI , 44 Mockup • 31 UO₂ , 15 MOX 10 CSAS6 Table 1 . 95 % 95 % Table 2

 7
 0.00982, 0.00580
 0.02347
 . Mockup

 7
 0.02347
 mockup

3. Mockup

 7.
 7.

 Mockup
 Fig. 1
 5 wt%

 7.
 , 1
 25.797kg
 4

가

. Fig. 2 . UO₂, U₃O₈, U 가 50 cm . 가 가 가 Fig. 1 , 4 . 가 . U₃O₈ 가 2.9 g/cm³ 65 % . UO₂ 50 % 50 % 가 . , . UO₂, U₃O₈ 31 % 가 U 60 % 가 . 가 1:2:1 가 1 g/cm^3 , 가 • . $k_{\text{max}} = k_{cal} + 2\sigma + k_{bias},$ (1) $k_{cal} \sigma$, k_{bias} . 가 Mockup , mockup 가 mockup 가 • , $k_{eff} = 0.95$ [6] (1) . , . 4. 가. 가 가 Fig. 3 • 가 , 가 • , 0.28356 0.95 . . 0.00524 . . 가

20 %, 40 % 60 %

Fig. 4 . Fig. 4 60 %

- U.S. Nuclear Regulatory Commission, SCALE: A Modular code System for Performing Standardized Computer Analyses for Licensing Evaluation, NUREG/CR-0200, Rev.6 (ORNL/NUREG/CSD-2/R6), Vols.
 1, 2, and 3, Oak Ridge National Laboratory (1998).
- [2] N. M. Greene, BONAMI: Resonance Self-Shielding by The Bondarenko Method, NUREG/CR-0200, Rev.6, Vol.2, Section F1, ORNL/NUREG/CSD-2/V2/R6 (1998).
- [3] N. M. Greene, L. M. Petrie and R. M. Westfall, NITAWL-II: SCALE System Module for Performing Resonance Shielding and Working Library Production, NUREG/CR-0200, Rev.6, Vol.2, Section F2, ORNL/NUREG/CSD-2/V2/R6 (1998).
- [4] N. M. Greene and L. M. Petrie, XSDRNPM: A One-Dimensional Discrete-Ordinates Code for Transport Analysis, NUREG/CR-0200, Rev.6, Vol2, Section F3, ORNL/NUREG/CSD-2/V2/R6 (1998).
- [5] D. F. Hollenbach, L. M. Petrie and N. F. Landers, KENO-VI: A General Quadratic Version of the KENO Program, NUREG/CR-0200, Rev.6, Vol.2, Section F17, ORNL/NUREG/CSD-2/V2/R6 (1998).
- [6] U.S. NRC, "Standard Review Plan," NUREG-0800 (1981).

N.	Material Form	Case Name	Experiment		Calculation [44 Group]		Calculation [238 Group]	
NO.			k _{eff}	±	k _{eff}		k _{eff}	
1	UO ₂	BNW1810B	1.0000	± 0.0000	0.99630	0.00148	0.99876	0.00162
2	"	BNW1810C		"	0.99894	0.00147	0.99619	0.00159
3	"	BNW1810A		"	0.99843	0.00146	0.99421	0.00165
4	"	BAW1231A		"	0.99468	0.00140	0.99258	0.00134
5		BAW1231B		"	0.99850	0.00112	0.99300	0.00113
6	"	P2615X14		"	0.99594	0.00172	0.99785	0.00169
7	"	P2615X23		"	0.99501	0.00151	0.99873	0.00175
8	"	P2615X31		"	1.00095	0.00171	0.99798	0.00177
9	"	P2827L2B		"	1.00887	0.00092	1.00666	0.00095
10	"	P2827U2B		"	0.99932	0.00175	0.99460	0.00192
11	"	P3314A		"	1.00158	0.00174	0.99832	0.00189
12	"	P3314B		"	1.00846	0.00158	1.00674	0.00121
13		P3602B4		"	1.00030	0.00177	1.00041	0.00185
14		P3602C4		"	0.99609	0.00133	0.99069	0.00161
15		P3602NON		"	1.00157	0.00176	0.99857	0.00181
16		P3602S4		"	1.00296	0.00179	0.99963	0.00200
17		P3926L4A		"	1.00387	0.00195	1.00068	0.00189
18		P3926NOB		"	0.99971	0.00185	0.99373	0.00179
19		FT214R		"	0.99794	0.00164	0.99792	0.00166
20		FT214V3		"	0.99937	0.00122	0.99588	0.00134
21		P4267A		"	0.99595	0.00131	0.99534	0.00121
22		P4267B		"	1.00326	0.00166	1.00350	0.00162
23		P4267C		"	0.99975	0.00140	0.99621	0.00126
24		P4267D		"	0.99751	0.00163	0.99090	0.00120
25		ANS33BB2		"	1.00723	0.00117	1.00585	0.00140
26		ANS33BH2		"	1.00725	0.00153	1.00535	0.00143
20		ANS33BP2		"	0.99788	0.00129	0.99684	0.00143
28		ANS33H2		"	0.99828	0.00127	0.99443	0.00152
29		SAXU56		"	0.99676	0.00158	0.99434	0.00240
30		SAXU792		"	0.99892	0.00195	0.99835	0.00187
31		WCAP3269B			1.00529	0.00155	0.99754	0.00181
32	MOX	EPRI70B	1.0000	± 0.0000	0.99954	0.00147	0.99674	0.00169
33	"	EPRI70UN		"	0.99901	0.00171	0.99485	0.00180
34		EPRI87B		"	1.00690	0.00140	1.00448	0.00157
35	"	EPRI87UN		"	1.00483	0.00133	0.99935	0.00130
36		EPRI99B			1.00765	0.00098	1.00541	0.00125
37		EPRI99UN			1.00534	0.00160	1.00687	0.00175
30 30		SAXTON52		"	1.00147	0.00130	0.99724	0.00129
40		SAXT0N56B		"	0.99434	0.00197	0.99476	0.00190
41		SAXTN735		"	0.99976	0.00198	1.00272	0.00196
42	"	SAXTN792		"	1.00108	0.00184	0.99795	0.00206
43	"	SAXTN104		"	1.00584	0.00127	1.00398	0.00143
44	"	P5803X21		"	1.00108	1.00120	0.99648	0.00133
45		P5803X32		"	1.01003	0.00129	1.00532	0.00136
46		P5803X43	1 0000	. 0 0000	1.01063	0.00146	1.00041	0.00133
4/ 48	Metal	IKAI TRX2	1.0000	± 0.0000 "	0.98857	0.00102	0.99186	0.00116
49		CAA01			0.99633	0.00149	0.99355	0.00154
50		CAA04		"	1.00770	0.00130	1.00737	0.00138
51	"	IMF002	1.0000	± 0.0030	0.99950	0.00114	1.00757	0.00104
52		HMF002-2			0.99761	0.00089	1.00319	0.00086
55 54		HMF002-3			0.99566	0.00082	1.00118 0.99956	0.00080
55	"	HMF002-5			0.99694	0.00088	1.00056	0.00084
56	"	HMF002-6		"	0.99669	0.00083	1.00269	0.00089

Table 1. Benchmark Calculation Results of SCALE4.4 CSAS6 Module

Material	Data #	Tolerance Limit Factor	$\overline{\Delta k} \pm s_{\Delta k}$	k _{bias}
UO ₂	31	2.208	0.00069 ± 0.00476	0.00982
MOX	15	2.566	0.00385 ± 0.00376	0.00580
Metal	10	2.911	-0.00452 ± 0.00651	0.02347
	0.02347			

Table 2. Calculation Bias of CSAS6 Module for Nuclear Material Types

Fig. 1 Configuration of devices and containers in Mockup Facility.

Fig. 2. Time-Dependent Configuration of Nuclear Materials in Mockup Facility.

Fig. 4. K_{eff} as a Function of Nuclear Material Thickness for Slab Shape at Hypothetical Accident-Condition.

Fig. 5. K_{eff} as a Function of Water Volume Ratio for Spherical Shape at Hypothetical Accident-Condition.