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Abstract

SFINEL (Spent Fuel INtegrity EvalLuator) code, an integrated computer program for
prediction the spent fuel rod integrity based on burn-up history and major degradation
mechanisms, has been developed in this research. In this study, CRUPT AIN program which is
one of the important module in the SFINEL code is estimated and benchmarked with the
in-pile data. According to the evaluation results, it is safe to store the spent fuel in the dry
condition, at least, for 40 years. It is also found that strain limit criteria is more conservative

than fraction rule method in the low temperature-high stress and the high temperature-low
stress storage condition.
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33000 55000 33000 55000
(MWD/MTU)
TO 947.75 1105.15 742.25 904.15
C1 0.398 0.366 0.344 0.372
c2 0.1 0.14 0.06 0.11
tn 6.065 6.14 6.11 5.46
n [T-273)=a, +a,+In [time)
a0 al (MWD/MTU)
25
a(B) = exp[1455 + 0.204 «In(B) - 0.2391¢ 10" ¢ In(B)’]
a:i(B) = -1.0339 + 0.0094 B,
5
a0(B) = exp[1.167 + 0.169 ¢ In(B)]
al(B) = -051391« 10" -0.98780« 10°® B + 092362 10" « B*
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€= creep rate s’

0 = stress, MPa

E = elastic modulus, MPa
Tw = melting temperature, K
T = cladding temperature, K
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Figure3 Deformation map for Zircaloy with
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Figure 4 Fracture map for Zircaloy showing dominant fracture mechanisms. The shaded area represents the

allow able is stress/decaying temperature of spent-fuel temperature in conditions to achivea 40-yr life.



Figure 5 Maximum allowable temperature by

Damage fraction rule and strain  limit

calculation as a function of initial cladding

fuel age with 33GWd/ MtU
burnup under the helium-backfill condition.

stress for various

Figure 7 Maximum allowable temperature by
Damage fraction rule and strain  limit
calculation as a function of initial cladding

stress for various fuel age with 33GWd/ MtU

burnup under the air-backfill condition

Figure 6 Maximum allowable temperature by
Damage fraction rule and strain  limit
calculation as a function of initial cladding

stress for various fuel age with 33GWd/ MtU

burnup under the nitrogen-backfill condition
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Figure 8 Burnup effect on Maximum allow able
initial storage temperature by Damage fraction
rule and strain limit calculation as a function of
initial for the helium-backfill

cladding stress

condition (fuel age: 7 years)
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Figure 9 Burnup effect on Maximum
allow able initial storage temperature by
Damage fraction rule and strain limit
calculation as a function of initial
cladding stressfor the nitrogen-backfill

condition (fuel age: 7 years)
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Figure 11 Variation of cumulative
damage fraction and strain vs. storage
time for 7 years fuel age with
33GWd/ MtU burnup (Initial stress:

30Mpa, Maximum temperature 361.1°C)
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Figure 10 Burnup effect on Maximum

allow able initial storage temperature

by Damage fraction rule and strain

limit calculation as a function of
initial cladding stress for  the
air-backfill  condition (fuel age: 7
years)
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Figure 12 Variation of cumulative
damage fraction and strain vs. storage
time for 7 years fuel age with
33GWd/MtU burnup (Initial stress:

100Mpa, Maximum temperature 331.9°C)
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Figure 13 Variation of cumulative
damage fraction and strain vs. storage
time for 7 with

33GWd/ MtU

years fuel age

burnup (Initial

30Mpa, Maximum temperature 377 4°C)
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Figure 15 Variation of cumulative
damage fraction and strain vs. storage
time for 7 years fuel age with
33GWd/ MtU burnup (Initial stress:

30Mpa, Maximum temperature 375.2°C)
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Figure 14 Variation of cumulative
damage fraction and strain vs. storage
time for 7 years fuel age with
33GWd/ MtU burnup (Initial stress:

110Mpa, Maximum temperature 344 .4°C)
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Figure 16 Variation of cumulative
damage fraction and strain vs. storage
time for 7 years fuel age with
33GWd/ MtU burnup (Initial stress:

110Mpa, Maximum temperature 342.5°C)
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Figure 17 Modified maximum allow able Figure 18 Modified maximum allow able
temperature vs. initial cladding stress temperature vs. initial cladding stress
for various storage year (5,7 and 10 for various storage year (5,7 and 10
years) with 33, 55GWd/MtU burnup years) with 33, 55GWd/MtU burnup
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Figure 19 Modified maximum allow able
temperature vs. initial cladding stress
for various storage year (5,7 and 10

years) with 33, 55GWd/MtU burnup
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