

Mo

## Abstract

This study investigated the property of molybdenum precipitate formed with -benzoinoxime and performed experiments to dissolve selectively precipitate without hydrogen peroxide, which is compound to affect interference in a following purification process. The precipitate was composed of -benzoinoxime-Mo precipitate and re-precipitate of -benzoinoxime added excessively for increasing precipitation efficiency of molybdenum. It was -benzoinoxime-Mo precipitate was formed by reaction two -benzoinoxime confirmed that molecules and one  $MoO_2^{+2}$ . The form of -benzoinoxime-Mo precipitate was amorphous. Dissolving in 0.4 N NaOH solution without hydrogen peroxide dissolved molybdenum to 97.5 % from precipitate within 5 minutes. This result was similar to the case adding hydrogen peroxide. Hydrogen peroxide serve only as dissolving rapidly re-precipitate of -benzoinoxime. And also, this dissolution method was favorable in the purification aspect as zirconium and ruthenium were contained to 1.3 and 7.7 % respectively in dissolving solution. Organic quantity of the dissolving solution to be fed in a following silver coated activated carbon adsorption process could be decreased to 50 % more or as dissolving only -benzoinoxime-Mo precipitate without dissolving a part of precipitate, re-precipitate of -benzoinoxime.

'2000

- Benzoinoxime

1. . <sup>99m</sup>T c, <sup>201</sup>T l, <sup>111</sup>In,  $^{123}I$ • 131 I <sup>89</sup>Sr [1]. <sup>99m</sup> T c (6 hour ) gamma energy (140 KeV) 80% <sup>99m</sup>T c <sup>99</sup>Mo가 66 decay <sup>99</sup>T c . <sup>99</sup>Mo <sup>98</sup>Mo Ru (neutron capture) <sup>235</sup>U (fission) 가 (specific activity) generator , <sup>235</sup>U 가 가 가 generator [2, 3]. <sup>235</sup>U <sup>99</sup>Mo , <sup>99</sup>Mo 가 / <sup>99</sup>Mo <sup>99</sup>Mo Mo/ [4, 5], Chelex - 100 [6, 7], DEPHA [2, 4, 8, 9], -benzoinoxime [2, (thermal sublimation) 10, 11, 12], [7] 2가 -benzoinoxime Mo U 1 Mo / -benzoinoxime Mo Mo (steel) (pig Mo [13]. - benzoin ox im e iron) Mo , Mo -benzoinoxime Mo / Mo SEM, FTIR, TG/DTA XRD Mo -benzoinoxime-Mo -benzoinoxime Mo. NaOH 가 . Mo 가 가 [12].

2.

L

13 (Rb, Cs, Sr, Ba, Mo, Zr, Te, Ru, Y, Ce, Pr, Nd, Sm) . <sup>99</sup>Mo 1 batch Table 1 93% U 4.39g 5 가 1 300m1 ORIGEN 2 code 30 가 U 5 가 Mo

 $Ba(NO_3)_2$ ,  $ZrO(NO_3)_2H_2O$ ,  $Ru(NO)(NO_3)_3$ ,  $Y(NO_3)_3.4H_2O$ ,  $Ce(NO_3)_3.6H_2O$ ,  $Pr(NO_3)_3.6H_2O_1$  $Nd(NO_3)_3.6H_2O, Sm(NO_3)_3.6H_2O)$ , Ru - ben zoin ox ime 0.4 N NaOH 2 wt% -benzoinoxime-Mo Mo 1 -benzoinoxime-Mo 50 ml - benzoin ox im e 가 (batch) cellulose nitrate membrane filter(Whatman) 0.45 µm (desiccator) 1 <sup>99</sup>Mo NaOH 1 wt% 가 , 0.1 N, 0.4 N NaOH SEM (scanning electron microscope, -benzoinoxime-Mo Model Akashi DS130S), FTIR (fourier transform infrared spectrometer, Model Nicolet 800), TG/DTA (thermogravimetry-differential thermal analysis, Model Setaram TG-DTA 92), XRD (X-ray diffractor, Model Siemens D5000) Sr, Ba, Mo, Zr, ICP (inductively coupled plasma Te, Y, Ce, Pr, Nd, Sm Mo spectrometer, model ISA Jobin-Yvon JY 50P) monochromator , Ru ICP (inductively coupled plasma spectrometer, model ISA Jobin-Yvon JY 38 plus) Cs AA (atomic absorption spectrophotometer, model GBC 906A) . Rb TOC (total organic carbon analyzer, model Shimadzu TOC . 5000A) -benzoinoxime-Mo SEM (scanning electron microscope, Model Akashi DS130S)

3.



Mo 가 10ppm , Mo -benzoinoxime 가 가 20 97% Mo가 [15]. Mo -benzoinoxime 가 BzO/Moフト 20 . 가 50 µm 1 µ m aggregation , BzO/Mo7 ↓ 4.7 1 µm 가 가 20 -benzoinoxime 71 Fig.2 -benzoinoxime 0.4 N NaOH 2 wt% 1 N 가 . - benzoinoxime-Mo 1 µm 가 가 4.7 . Fig.3 -benzoinoxime ( ) -benzoinoxime-Mo FTIR C-H  $3100 - 3000 \text{ cm}^{-1}$  band , (monosubstitution) benzene 1500, 1450, 750, 697 cm<sup>-1</sup> peak , 3300 - 3150 cm<sup>-1</sup> benzene OH peak 7 . oxime(C=N-OH) OH 3300 - 3150  $cm^{-1}$  , C=N  $1690 - 1620 \text{ cm}^{-1}, \text{ N-O}$  930 cm<sup>-1</sup> peak가 , C-H 2900 cm<sup>-1</sup>, C-O  $1075 - 1000 \text{ cm}^{-1}$ -benzoinoxime [16]. -benzoinoxime-Mo OH 900 cm<sup>-1</sup> -benzoinoxime . M=O, V=O, Nb=O, Ta=O, W=O, Re=O, Os=O peak  $M=O \text{ group } (M: \text{ metal, } O: \text{ oxide}) \quad 1050 - 800 \text{ cm}^{-1} \qquad \text{peak7}$ [17] peak가 Mo=O  $, 900 \text{ cm}^{-1}$ FT IR - benzoin ox im e - M o 2 -benzoinoxime H<sup>+</sup>가 7  $M O_2^{+2}$ . Fig.4 0.4 N NaOH -benzoinoxime 1N FTIR - ben zoin oxim e peak 가 가 - benzoin ox im e . Fig.5 - benzoinoxime-Mo , MoO<sub>3</sub>, - benzoinoxime( ) TG-DTA , MoO3 -benzoinoxime 550 785 T G-DT A .  $M O_{2}^{+2}$   $M O_{3}$ . - benzoinoxime - Mo 550  $MoO_2^{+2}$ -benzoinoxime 785 TG - benzoinoxime Mo . 25% 1 : 1.9**FTIR** mole 가 . Fig.6 - benzoinoxime-Mo -benzoinoxime ( ) 0.4 N NaOH -benzoinoxime 1N XRD pattern , XRD CuK 2.4%min (scanning speed)  $2 = 5.5 - 35^{\circ}$ . XRD pattern , SEM -benzoinoxime-Mo -benzoinoxime() -benzoinoxime peak

T

| -benzoinoxime    | peak가             | FTIR          |       |               | 가             |
|------------------|-------------------|---------------|-------|---------------|---------------|
|                  |                   |               |       |               |               |
| . Mo             |                   |               |       |               |               |
| Мо               | - benzoin ox im e |               |       | NaOH          |               |
| 가 20             |                   |               |       | Мо            |               |
|                  |                   |               |       | 가             | 5             |
|                  |                   |               |       | Мо            |               |
|                  | Fig.7             | Мо            |       | 5             | Мо            |
|                  | 0.1 N NaOH        |               |       |               |               |
| 97 %             |                   | 0.1 N NaOH    | [     | 5, 88.8%      | ,             |
| -ben             | zoinoxime-Mo      |               |       | 가             |               |
| 60               |                   |               | 가     | 20            |               |
|                  | 가                 |               | 가     | -benzoinoxime | Мо            |
|                  |                   | 가             |       |               |               |
|                  |                   |               | T ab  | ole 2         | . Mo          |
|                  | Zr Ru             |               | Sr, B | a Nd          |               |
|                  |                   |               |       |               | ,             |
|                  | Zr Ru             |               |       |               |               |
| 5 % Mo           |                   |               |       | , 0.1 N NaC   | Н             |
| Zr Ru            |                   |               |       |               |               |
| -benzoinoxime-Mo | NaOH              |               |       |               |               |
|                  |                   |               |       | 5             |               |
| Fig              | .8 .              | -benzoinoxime | - Mo  |               |               |
| -benzoinoxime    |                   |               |       |               |               |
| 가                |                   |               |       |               | -benzoinoxime |
| 가                |                   | , Mo          |       |               |               |
|                  |                   | TOC           | Fig.9 |               |               |
| 가                | 20                |               |       | -ben          | zoinoxime 가   |
| 84.2 %가          | . 0.4 M           | NaOH          |       | 39.7 %        |               |
| - ben zoin ox im | e                 |               |       |               |               |
|                  |                   | ,             |       |               |               |
|                  |                   |               |       |               |               |
|                  |                   |               | 가     |               |               |
|                  |                   |               |       |               |               |
| 4.               |                   |               |       |               |               |

-Benzoinoxime Mo

,

-benzoinoxime-Mo

•

| 1) | -benzoinoxir   | ne         |      |     | - b e             | en zoin ox im | e-Mo      | Мо                |       |
|----|----------------|------------|------|-----|-------------------|---------------|-----------|-------------------|-------|
|    |                |            | 가    | - t | ben zoin ox im e  |               |           |                   |       |
| 2) | FTIR TG-D      | РΤΑ        |      | Мо  | - ben zoin ox     | ime           |           | - ben zoin ox ime |       |
|    | $M  oO_2^{+2}$ |            |      | -be | enzoinox im e - N | ſo            |           |                   |       |
|    | , -benz        | zoin ox im | e-Mo |     |                   |               |           |                   |       |
| 3) | 0.4 N NaOH     | 5          |      |     | Мо                | 97.5 %        |           |                   | 가     |
|    |                | 가          | ,    | 가   |                   | - benzoir     | n ox im e |                   |       |
|    | 가              |            | •    |     |                   |               | Zr        | Ru                | 1.3 , |
| ,  | 7.7 %          | Мо         |      |     |                   |               |           |                   |       |
| 3) |                |            |      |     | - ben zoin ox i   | me            |           |                   |       |
|    | -benzoinoxime- | Мо         |      |     |                   |               |           | 가                 |       |
|    | 50             | %          |      |     |                   |               |           |                   |       |

•

I.

- 1. M.A. Langton, Trans. Am. Nucl. Soc., 72, 134 (1995).
- 2. IAEA, Fission Molybdenum for Medical Use, IAEA-TECDOC-515 (1989).
- 3. A. Ali. Sameh and Ache. Hans. J., Radiochimica Acta, 41, 65 (1987).
- 4. W. L. Cheng, C. S. Lee, C. C. Chen, and G. Ting, Radischim. Acta., 47, 69 (1989).
- 5. J. L. Iturbe, Appl. Radiat. Isot., 41, 7, 693 (1990).
- 6. A. K. Gupta, E. S. Williams, and A. A. Aguwa, *A ds orp tion and Ion Exchange*, 78, 103 (1979).
- 7. A. A. Sameh and J. A. Hans, Radiochim. Acta., 42, 65 (1987).
- 8. E. Ejaz, A. M. Mamoon, and M. A. Qureshi, Appl. Radiat. Isto., 39, 1 (1988).
- 9. T. Wei, W. L. Cheng, and G. Ting, Solvent Extract. And Ion Exchange, 2, 3, 435 (1984).
- 10. C. K. Sivaramakrihan, Rep. BARC-84 (1976).
- 11. H. Arino, F. J. Cosolito, K. D. George, and A. K. Thrnton, USP 3940318.
- W. L. Cheng, C. S. Lee, C. C. Chen, Y. M. Wang, and G. Ting, *Appl. Radiat. Isto.*, 40, 4, 315 (1989).
- 13. H. Knowles, Bur. Stds. J. Research, 9, 1 (1932).
- 14. E. Jdid, P. Blazy, Ind. Miner, Mines Carrier Tech., 2, 83 (1989).
- 15. D. Wu, S. Landsberger, G. F. Vandegrift, J. Radioanal. & Nucl. Chem., 216, 1, 101 (1997).
- N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3<sup>rd</sup> ed., Academic Press, San Diego (1990).
- 17. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed., John Wiley & Sons, New York (1978).

| Element | Concentrat | tion (ppm) | <b>F</b> 1 | Concentration (ppm) |           |  |
|---------|------------|------------|------------|---------------------|-----------|--|
|         | Estimated  | Simulated  | Element    | Estimated           | Simulated |  |
| Ag      | 0.15       | -          | Pd         | 0.26                | -         |  |
| As      | 0.01       | -          | Pm         | 2.91                | -         |  |
| Ba      | 15.6       | 15.6       | Pr         | 13.8                | 13.8      |  |
| Br      | 0.37       | -          | Pu         | 0.63                | -         |  |
| Cd      | 0.21       | -          | Rb         | 6.72                | 6.72      |  |
| Ce      | 39.3       | 39.3       | Rh         | 0.91                | -         |  |
| Cs      | 6.68       | 6.68       | Ru         | 32.4                | 32.4      |  |
| Eu      | 0.54       | -          | Sb         | 0.42                | -         |  |
| Gd      | 0.05       | -          | Se         | 0.95                | -         |  |
| Ge      | 0.01       | -          | Sm         | 4.73                | 4.73      |  |
| I       | 10.5       | -          | Sn         | 0.59                | -         |  |
| In      | 0.02       | -          | Sr         | 27.3                | 27.3      |  |
| Kr      | 7.12       | -          | Тc         | 7.16                | -         |  |
| La      | 1.58       | -          | T e        | 12.0                | 12.0      |  |
| Мо      | 50.0       | 50.0       | U          | 14123.0             | -         |  |
| Nb      | 0.53       | -          | Xe         | 21.0                | -         |  |
| Nd      | 36.9       | 36.9       | Y          | 11.9                | 11.9      |  |
| Np      | 0.42       | -          | Zr         | 64.5                | 64.5      |  |

Table 1. Chemical composition of the estimated  $UO_2$  target and the simulated solution

I

Table 2. Fraction of the other elements remained in the dissolving solution with dissolution method

| Element | 0.4 N NaOH, % | 0.1 N NaOH, % | 0.4 N NaOH +<br>H2O2, % | H2O, % |
|---------|---------------|---------------|-------------------------|--------|
| Rb      | 0             | 0             | 0                       | 0      |
| Cs      | 0             | 0             | 0                       | 0      |
| Sr      | 0             | 0             | 0                       | 0      |
| Ba      | 0             | 0             | 0                       | 0      |
| Zr      | 1.3           | 0.9           | 1.3                     | 0      |
| T e     | 0             | 0             | 0                       | 0      |
| Ru      | 7.3           | 5.3           | 7.7                     | 0      |
| Y       | 0             | 0             | 0                       | 0      |
| Ce      | 0             | 0             | 0                       | 0      |
| Pr      | 0             | 0             | 0                       | 0      |
| Nd      | 0             | 0             | 0                       | 0      |
| Sm      | 0             | 0             | 0                       | 0      |



Fig. 1. SEM photographs of molybdenum precipitate (a) BzO/Mo = 20 (b)BzO/Mo = 4.7



Fig. 2. SEM photograph of re-precipitated -benzoinoxime



T

Fig. 3. FTIR spectrums of -benzoinoxime and -benzoinoxime-Mo precipitate



Fig. 4. FT IR spectrum of re-precipitated -benzoinoxime



Fig. 5. TG-DTA of -benzoinoxime precipitate, MoO<sub>3</sub>, and -benzoinoxime



T

Fig. 6. XRD patterns of -benzoinoxime-Mo precipitate, re-precipitated -benzoinoxime, and -benzoinoxime



Fig. 7. Dissolution fraction of Mo with dissolution method



Fig. 8. SEM photographs of undissolved precipitate after dissolving during 5 minutes
(a: dissolution by 0.4N NaOH
b: dissolution by 0.4N NaOH+1wt% H<sub>2</sub>O<sub>2</sub>)



I

Fig. 9. Residual TOC fraction in the dissolution solution