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Abstract

The CRX code based on the method of characteristics is extended to treat whole-core
heterogeneous calculation. Since the heterogeneous transport calculation for such a large
scale problem requires large computer memory, a modular ray tracing in which all lattice
cells have the same ray distribution for each direction was used to reduce the computer
memory requirement. In this scheme, the ray tracing is performed on only different
types of cells. Therefore, this ray tracing scheme can reduce significantly the time in
tracking along neutron paths and the computer memory for storing track lengths. Also,
a parallelization scheme in angular domain rather than in spatial domain and the coarse
mesh/coarse group rebalance (CMR/CGR) method in inner and outer iterations were
implemented for further reduction of the computing time. To show the effectiveness of
the extended CRX code, it is applied to a small core (i.e., 8x8 whole core) heterogeneous
calculation. The numerical results show that the extensions of CRX are effective in
saving the computer memory and in reducing the computing time. A comparison with
the diffusion nodal method shows maximum 4.92% difference in assembly power.

I. INTRODUCTION

Recently, the method of characteristics (MOC)([1],[2],[3],[4],[5],[6],[7],[8]) which combines
desirable features of the integral transport and SN methods has been considered as an effective
methodology in the lattice calculation. This method gives accurate solutions in complex
geometries, strong absorber problems, strongly anisotropic problems and so on because its
calculation preserves the simplicity of the SN method. It divides directions like in SN and
for each direction performs transport calculation like the collision probability method by
integrating the differential form of the within-group transport equation along its parallel
characteristic lines. For better accuracy, it needs many rays and fine angle divisions.

Like most of the transport methods, MOC also requires long computing times and large
computer memory for large scale problems such as multiassemblies and whole cores. There-
fore, it has been nearly impossible to use the transport theory methods in the heterogeneous
calculation for large scale problems. For this reason, the original ray tracing scheme in which
the ray tracing is performed on whole problem was modified so that it is sufficient to perform
the ray tracing on only different types of cells. The modified ray tracing scheme requires



that all lattice cells have the same size and the angular quadrature set is selected so that
all lattice cells have the same ray distribution for each direction. Therefore, the ray tracing
is performed only for different cell types and it leads to significant reduction of computing
time and computer memory. Also, it must be noted that with this modified scheme, the rays
on external or reflective boundaries can return to the exactly same position and it leads to
improvement of accuracy of the solution. To further reduce the computing time and save the
computer memory, a parallelization scheme that does not require an iterative procedure was
implemented by decomposing the angular domain, and coarse mesh/coarse group rebalance
method (CMR/CGR) was used to reduce computing time of outer and inner iteration. The
CRX code with these extensions[9] described above is applied to a small test core problem
with MOX fuels. The results are compared with those of the diffusion nodal code AFEN.

II. THEORY AND METHODOLOGY

II.1 The Methodology of the CRX Code

To describe the method of characteristics, the starting equation is the within-group trans-
port equation in discrete ordinates form :

[
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]
ψg(~r, Ω̂n) =

G∑
g′=1

L∑
l=0

l∑
m=−l

Yml(Ω̂n)σslgg′(~r)φmlg′(~r)

+
χg
keff

G∑
g′=1

(νσf )g′φg′ = qg,n

(1)

where wn is the weight for direction Ω̂n, L is the order of anisotropy of scattering (L=3 in
the current version of CRX) and the moments φmlg are given by

φmlg (~r) =
N∑
n=1

wnY
∗
ml(Ω̂n)ψg(~r, Ω̂n), (2)

where N is the number of directions. Eq.(1) can be rewritten in the following differential
form :

sin θn
dψg,n
dp

+ σgψg,n = qg,n, (3)

where p is the projected coordinate on x − y plane of the coordinate along the neutron
trajectory for direction Ω̂n and θn is the polar angle. The equation for the outgoing flux along
a ray in a computational mesh with the flat source approximation is obtained by analytically
integrating Eq.(3) :

ψoutg,n,l = ψing,n,le
−σgLn,l/sin θn +

qg,n
σg

(1− e−σgLn,l/sin θn), (4)

where Ln,l is the track length of the l’th ray for direction Ω̂n in the mesh. The average flux
along the ray included in the mesh for direction Ω̂n is obtained by integrating Eq.(3). The



equation is given as follows :

ψ̄g,n,l =
qg,n
σg

+ sin θn
(ψing,n,l − ψoutg,n,l)

σgLn,l
. (5)

However, to perform the scattering source iteration, the average angular flux over the com-
putational mesh is required for generation of the source. The equation for the average flux
over the computational mesh is obtained by summing the average fluxes (Eq.(5)) over the
rays passing through the mesh. The equation is given as follows :

ψ̄g,n =
qg,n
σg

+
sin θn
Aσg

∑
l∈mesh(i,j)

δn
(
ψing,n,l − ψoutg,n,l

)
, (6)

where δn represents the spacing between two adjacent rays for direction Ω̂n, and A is the
area of the mesh. In the method of characteristics, Eq.(4) and Eq.(6) with a general tracking
module are complete for transport calculation.

II.2 Whole-Core Heterogeneous Calculation

In the original ray tracing scheme of the CRX code, the ray tracing is performed over
the whole problem and the computed neutron track lengths for all azimuthal directions and
for the whole problem are stored for use in the scattering source iteration. Therefore, the
scheme can treat any angular quadrature set and any geometrical structure of the problem,
although it would require large computer memory and consume long computing time for large
scale problems such as the whole-core heterogeneous calculation. Thus, the scheme can be
very ineffective for large scale problems that are comprised of lattice cells even with the same
geometric dimensions. Therefore, we have modified the scheme so that the ray tracing can
be performed only for different geometrical cell types and therefore, the computing time and
computer memory are reduced significantly in the ray tracing. First, the sizes of the lattice
cells are assumed to be the same. In order for all lattice cells to have the same ray distribution,
the angular azimuthal quadrature set ([10], [11], see Figure 1) proposed by Filippone et al is
selected. The azimuthal angles (ϕ) for first octant are determined by

tan(ϕr) = (A/B)× r

(Nϕ + 1− r)
, r = 1, 2, 3, · · · , Nϕ, (7)

where Nϕ is the number of azimuthal angles for first octant, A and B are the sizes of the
lattice cell for x and y directions, respectively. Then, the number of rays for each direction
in a lattice cell is equal to Nϕ + 1. Therefore, if the number of rays for one lattice cell is
specified, the number of azimuthal angles for an octant is determined. The number of rays
used is typically more than 20. Therefore, the number of azimuthal angles is too large and
it may lead to very long computing time. Thus, we use only a subset (N ′ϕ) of these angles
selected by considering the symmetry about the 45 degree line (see Figure 1). With this
scheme, the ray distributions for all lattice cells become the same. Another merit of this
angular quadrature set is the improvement of the accuracy due to the return of the rays to
the exactly same position on the external or reflective boundaries.

Furthermore, the rays are swept through the whole problem domain, e.g., starting from an
external boundary, reflecting at a reflective boundary (if any), and then ending at an external



(a) Ray distribution when r=3 (b) Ray distribution when r=7

(c) Azimuthal angles (Nϕ=9, N ′ϕ=2)

Figure 1: Ray distributions and azimuthal directions

boundary.

II.3 Parallel Computation

Parallel computation of the CRX code was performed with MPI (Message Passing Inter-
face). The message passing model posits a set of processors that have only local memory but
are able to communicate with other processors by sending and receiving messages. The sum
of angular fluxes, rebalance factors, and flux moments are transferred. Each processor calcu-
lates for Nangle/Nprocessor directions. So each computer has the following calculated results
:

φm,Plg (~r) =
n∈nP∑
n=1

wnY
∗
ml(Ω̂n)ψg(~r, Ω̂n), (8)

where P represents the processor number, and nP represents the angle set which is calculated



in processor P . After this procedure, the above data are collected and summed as follows :

φmlg (~r) =
∑
P

φm,Plg (~r). (9)

Then these results are distributed to each processor for next iteration. Then leakage terms
are collected to calculate rebalance factors in master processor (one of the processors). These
rebalanced factors are then distributed to each processor and multiplied to all of the flux
moments in each processor.

The ray sweeping strategy in Section II.2 with the angularly decomposed parallel compu-
tation does not require iteration on the assumed interface angular fluxes, in contrast to the
domain decomposition parallel scheme in Ref. [12].

The efficiency of this parallel computation depends on the number of computational mesh-
es since the communication time increases as the number of meshes increases ( in our scheme,
the amount of communication is proportional to the number of meshes). This method is
effective in problems in which the communication time is a small portion of the total time
(i.e., communication time plus computing time).

III. NUMERICAL RESULTS

We solved a 8×8 whole core problem to show the effectiveness of the CRX code with some
extensions. This problem consists of eight MOX fuel assemblies and twenty four UO2 fuel
assemblies. The description of this problem is given in Figures 2 and 3. For comparison, the
AFEN code that is a nodal diffusion code was applied to this problem. In fact, the CRX code
and the AFEN code were applied to only 1/4 core due to the symmetry. For this problem,
the material cross sections were extracted from the HELIOS code. For the AFEN code, two
group cross sections and discontinuity factors were prepared by the HELIOS code through
the condensation and homogenization procedure. On the other hand, the CRX code used
the seven group transport corrected cross sections[13] also prepared by HELIOS. Figure 6
shows the eigenvalues and normalized assembly power distributions calculated with CRX and
AFEN.

In this numerical test, 8 azimuthal and 2 polar angles per an octant, and 40 rays per
a cell in each direction were used in the CRX code. The convergence criteria of 10−6 for
eigenvalue and 10−5 for fission source were used. Figures 4 and 5 show the normalized cell
power and 7th group flux distributions, respectively. The parallel efficiency is shown in Figure
7. The parallel speedup with 16 CPUs is 14.14, efficiency of 88% and computing time is 3568
sec, about 1 hour. We have experienced that the computing time is proportional to the
number of rays but the accuracy is not sensitive to it. Therefore the computing time can
be reduced further by reducing the number of rays without loss of accuracy. This parallel
calculation was performed on KAIST*GALAXY cluster. KAIST*GALAXY cluster consists
of dual PentiumII-300 front-end and 16 Celeron 300A compute-nodes.
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Figure 2: Core Con�guration
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Figure 4: Normalized Cell Power Distribution

Figure 5: Cell Averaged 7th Group Neutron Flux Distribution
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Figure 6: Normalized Assembly Power Distributions and Eigenvalues

Figure 7: Computing Time versus Number of CPUs



IV. CONCLUDING REMARKS

The method of characteristics in the CRX code was extended for heterogeneous transport
calculations of large scale problems. First, a modular ray tracing scheme was devised to
reduce the computer memory and computing time for the neutron track lengths. With this
modular ray tracing scheme, the ray tracing is performed on only different types of cells but
this ray tracing scheme requires that all cells have the same dimensions. Second, parallel
computation with an angular decomposition was also implemented to further reduce the
computing time and computer memory. To show the effectiveness of these extensions, the
CRX code with these extensions was applied to a 8×8 whole core test problem having MOX
fuels. The numerical results show that the CRX code with these extensions is very effective
in reducing the computer memory and the computing time. Also the results of the CRX code
were compared with those of the AFEN code based on a nodal diffusion method, showing the
differences of 0.014% in eigenvalue and maximum 4.92 % in assembly power.
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