

Melting Experiment on Concrete Waste using a Hollow Type Plasma Torch mounted on Furnace

'2000

Abstract

A furnace coupled with a hollow type plasma torch was manufactured and installed in order to develop a volume reduction technology for non-combustible radioactive waste using plasma. A melting test with 10 kg of concrete waste was carried out for the evaluation of melting characteristics in the non-transferred operation mode for 20 minutes with the melter. Feeded concrete was completely melted. However, the molten bath was not easily discharged because of its high viscosity. It was found that some molten slag spat from the molten bath was coated on the surface of torch which was mounted vertically inside furnace.

1.

가

가

I.

2.1.

	(Clamshell		가	
		Callidus Technology	" _		23
	가				
가					
2.1.1.					

	200k W	가
PT - 150C		

•

(programable logic controller) 1.] . [.

I.

. [2.]

2. CLANSHELL DETAIL

2.1.3.

300kW 380

480 3

.

[1.]

.

- 1		
- 1		

Input Voltage	380Vac, 3 , 60Hz(transformer)						
Output (Supply)	300kW, 3kHz 250Vdc, 1200Adc(maximum)						
Output Regulation	$\pm 1\%$ of full scale max. for a $\pm 10\%$ line/load variation or a ± 25 temperature variation						
Current Control	Manual(local) : local 10 turn potentiometer Automatic(remote) : 4-20mA signal from an external source						
Temperature, Ambinent	1 to 40						
Cabinet Dimensions (H×W×D) Cabinet Type	Choke & Regulator - 91.5" × 48' × 24" Transformer - 54"H × 60"W × 40"D NEMA 1						

가

2.1.4.

가

3.

/ (water/power junction box),

			•		10,04	l6 rpm	
75gpm 가		가 700feet		30	가	,	
					가		
[3.]						

,

2.2.1.

,

2.2

I

.

•

.

,

•

[2.]

2			
L	•		

•

SiO ₂	Al ₂ O ₃	CaO	Fe_2O_3	MgO		(g/cm^3)
42.11	10.59	1.83	23.33	2.39	10.87	1.25

2.2.2.

		가			
4	가		,		
(silicon photocell)				가 600	3000
(T R - 630 $)$					
(pint)			2m		

2.2.3.

PT - 150C

150kW

20

2.2.4.

,

가

•

가

•

• 가

2.3.2..

	가					
			가		(anode)	(cathode)
	가		가			
가	가				[3.]	
	가	가	가	hunting		

	3.	3.				
	Torch gas pressure	70 kpa				
	Torch gas flow	73 lpm				
	Torch cooling water flow	125 lpm				
(DNU 000)	Torch cooling water supply temp.	8.9				
(PNL 900)	Torch cooling water return temp.	12.0				
	DC arc power	150 kW				
	DC arc voltage	480 V				
	DC are current	290 A				
	Arc voltage(AC)	395 V				
(PPS)	Arc current(AC)	300 A				

2.3.3.

.

I.

4.

(wt%)							
SiO ₂	Al_2O_3	CaO	Fe_2O_3	MgO			(g/cm^3)
52.68	10.59	1.83	23.33	2.39	4.52	1.72	1.37

가

가 150kW 20

가 가 Heating Microscope 5. " CIWAM, 1998, [1] , p46 [2] 1991, p291 " 1991, p21, p220 [3] : " [4] (I)" , 1997 [5] Handbook "Vitrification Technologies for Treatment of Hazardous and Radioactive Waste" Office of R&D U.S Environmental Protection Agency, Cincinnati, OH 45268. 1992, p3 [6] J. Bradley Mason "Vitrification Advances for Low Level Radioactive and Mixed Wastes" Proceedings, EPRI International LLW Conference, 1995, p4-9 [7] Camacho, S.L. "Industrial-Worthy Plasma Torches : State of the Art," Pure&Applied Chemistry, Vol. 60, 1988, p619-632 [8] Eschenbach, R.C., "Glass slag from Rotary Hearth Vitrification," presented at the ACS Engineering Technologies in Hazardous Waste Management, Retech Atlanta, Georgia, USA, 1995

[9] Jong-Kil Park, et.al., Technical and Economical Assessment for Vitrification of Low level Radioactive Waste from Nuclear Power Plants in Korea, Proceedings in Waste Management '96, Tucson, Arizona, USA, Feb. 25-29,1996.

[10] Louis J.C. "Final Report for Destruction of Asbestos-Containing Materials Using Plasma Arc Technology", Georgia Institute of Technology, Atlanta, Georgia, USA, 1995

가