Nickel hexacyanoferrate

$$Ag^+ Cs^+$$

Ion Exchange for Mixed Solution of Ag⁺ and Cs⁺ ions with Nickel Hexacyanoferrate

Abstract

Nickel hexacyanoferrate(NiFC) ion exchanger was synthesized for treatment of spent MEO(mediated electrochemical oxidation) process wastes containing Ag^+ and Cs^+ ions and ion exchange behavior of NiFC for Ag^+ and Cs^+ ions was investigated. NiFC had a face centered cubic structure with the patricle size less than 1 μ m. The distribution coefficient of Ag^+ ion, $K_{d,Ag}$ was more than 2.4×10^4 mL/g at pH=2 and increased in proportion to pH. In case of Cs⁺ ion, $K_{d,Cs}$ was about 2.8×10^3 . The adsorption capacity for Ag^+ ion and Cs⁺ion were 8.08meq/g and 1.34meq/g, respectively. For binary data modeling, Dubinin-Polyani model was the best equation for Ag^+ ion and Freundlich model for Cs⁺ion. For multicomponent data modeling, Modified Dubinin-Polyani equation was found to predict multicomponent data accurately.

'2000

.[1,2] Ag(II)/Ag(I), Fe(III)/Fe(II)Mn(III)/Mn(II)2 가 Ag 95% Ag Cs, Sr Ag 가 Ag 가 가 가 .[3-7] , . , hex acy an oferrate Cs , Kourim [8] Vol'hin et al[9] Potassium nickel hexacyanoferrat Cs가 nickel hexacyanoferrate(NiFC) Cs. .[10 12] Ag 가 가 nikel hexacyanoferrate(NiFC) 가 Cs Ag 가 . 가

2.

2-1. Nickel hexacyanoferrate(NiFC) NiFC Potassium ferrocyanide $(K_3Fe(CN)_6)$ nickel nitrate(Ni(NO₃)₂ · $6H_2O$) 1L , 0.1M . 가 mechanical stirrer 300mL 30 m L $Ni(NO_3)_2 \cdot 6H_2O$ 0.1M $K_{3}Fe(CN)_{6}$ 100 6 24 aging • . 90 72 pH > 5А 2 Х (Rigaku) , X-CuK (=1.541) 5 80 NiFC (morphology) scanning . electron microscopy (SEM, Jeol JSM-520) , coating .

.

2-2 Ag , Cs . 0.002N Cs (NO₃)₂ 10mL NiFC 0.1g 7 25 24 . Cs pH 2.00 5.76

1.

pН	HNO ₃		Cs 0.45	jμm syringe filter
		A.A (Perkin-Elmer, m	odel 1100B)	Cs
	. Cs	(K d , c s)	.[11]
	$K_d = \frac{C_i - C_f}{C_f}$	$\times V/m [mL/g]$	(1)	
	, $C_i = C_f (m eq/mL)$			V(mL) = m(g)

•

2-3.

NiFC 0.1g	0.002N	$0.2N AgNO_3$	$CsNO_3$		10m L	25	24		
	HNO ₃	Ag	Cs	pН	2				
0.	.45μm syringe	e filter				A.A		Ag	Cs
		. Ag-Cs							

3.

3.1. XRD SEM

 NiFC XRD
 Fig. 1
 Ni₂Fe(CN)₀
 XRD peak

 ,
 NiFC7
 .[13] NiFC

 SEM
 Fig. 2
 .10000
 image

 ,
 1µm
 .

3.2.

	NiFC Ag Cs				Table 1			. pH
Ag	Cs	\mathbf{K}_{d}	Ag	, pH가	가	K	_{d,Ag} 가 가	
, pH=5		$K_{d,Ag} > 2.3 \times 1$	105				pH=2	
$K_{d,Ag} > 2.4 \times 10^4$. C	s, pH	H=2	가	K d,cs	
		NiFC가 Cs	5					

3.2.

NiFC	Ag	Cs		Fig. 3	Fig 4	•	
			Langmuir, Freundlich	Dubinin-	Polyani		,
		.[14]					

Lanmuir equation;

$$Q = \frac{Q_m \ b \ C}{1 \ + \ b \ C} \tag{2}$$

Freundlich equation;

$$Q = k C^{1/n}$$
(3)

Dubinin-Polyani equation;

$$Q = Q_s \exp[-kR^2 T^2 (\ln(C_s/C))^2]$$
(4)

, Q(meq/g) = C(meq/mL) Q_m $Q_s (m eq/g)$, C_s Langmuir, Freundlich Dubinin - Polyani . b, n k nonlinear regression fitting Table 2 . NiFC Ag Cs, $Q_m (m eq/g)$ 8.08 1.34 Cs (NiFC) (Ag^+)) g \mathbf{R}^2 error variance . Fig . . 3 Fig. 4 Table 2 nonlinear regression fitting , Ag Cs 가 Dubinin - Polyani Freundlich . 가 .[14]

MultiLangmuir model ;

$$Q_{i} = \frac{Q_{mi}b_{i}C_{i}}{1 + \sum_{j=1}^{m}b_{j}C_{j}}$$
(5)

MultiLangmuir-Freundlich model ;

$$\frac{Q_i}{Q_{mi}} = \frac{b_i C_i^{1/n_i}}{1 + b_1 C_1^{1/n_1} + b_2 C_2^{1/n_2}}$$
(6)

MultiDubinin-Polyani model ;

$$Q_{i} = \exp \left[b_{o} + b_{1}^{*} \ln (C_{i}) + b_{2}^{*} \left[\ln (C_{i}) \right]^{2} \right]$$
(7)
$$b_{o} = \ln (Q_{s}) - kR^{2} T^{2} \left[\ln (C_{s}) \right]^{2},$$

$$b_{1} = 2kR^{2} T^{2} \ln (C_{s}),$$

$$b_{2} = -kR^{2} T^{2}$$

, $Q_i(m\,eq\!/\,g\,)$ $C_i(m\,eq\!/\,m\,L\,)$ i b_{i}, b_{0}, b_{1} b_2 . Fig. 5 Fig. 6

,

modified Dubinin-Polyani [14] Modified Dubinin-Polyani

Table 3

.

Modified Dubinin-Polyani equation ;				
$Q = \exp[b_{o} + b_{1}^{*} \ln(C) + b_{2}^{*} [\ln(C)]^{2}]$	(8)			
Modified Dubinin-Polyani 0.87 0.97		fitting	,	(\mathbf{R}^2)
			modified	Dubinin - Poly
	•			

ani

4.

가 Nickel hexacyanoferrate(NiFC) $1\mu m$ $, 2.4*10^4 \text{mL/g}$ 가 pH=2,(K_d) Cs Ag NiF C $8.08 \, \text{meq/g}$, Ag Cs nonlinear regression fitting 1.34 meq/g、가 , Dubinin - Polyanitlr Cs Freundlcih Ag Langmuir, Langmuir-Freundlich Dubinin - Polyani Cs . Ag

.

modified Dubinin-Polyani fitting

- Chiba, C., Schumacher, B., Murguia, L.: "Mediated Electrochemical Oxidation as an Alternative to Incineration for Mixed Wastes", UCRL-JC-119133(1993)
- [2] M.Ozawa, et al., Global'97 proceeding, 2(1997),1232.
- [3] Kaneko, H., Tsuji, M. and Abe, M. : Nucl. Sci. and Tech., 29, 988(1992).
- [4] Bronic, J. and Subotic, B. : Radioanal. and Nucl. Chem., 162, 339(1992).
- [5] Robinson, S. M., Arnold, W. D. and Byers, C. H. : AIChE., 40, 2045(1994).
- [6] Manaklala, H. K.: "Nuclear Waste Management Technology Support, in Development of Nucler waste from Criteria for the NCR", Vol. 3, Waste Inventory Review, Brookhaven Nat. Lib. Upion (1982).
- [7] Carmon. B., Der, A., Keir, D.: Radioal. Nucl. Chem. Art. 125, 135(1988).
- [8] Kourim, V., Rais, J., Stejskal, J.: J. Inorg. Nucl. Chem., 26, 1111(1964).
- [9] Vol'khin, V.V., Kolesova, S.A.: Zh, Prikl. Khim., 40, 342(1967).
- [10] IAEA Technical Rep. Ser. No.356, (1993).

- [11] Mimura, H., Lehto, J. and Harjula, R. : Nucl. Sci. and Tech, 34, 484(1997).
- [12] Mishra, S. P., Tiwary, D.: J. Radionanal. Nucl. Chem. Art.(1994).
- [13] Kuznetsov, V.G., Popova, Z.v., Seifer, G.B.: Russ. J. Inorg. Chem., 15, 956(1970).
- [14] S. M. Robinson, W.D. Arnold.Jr., C.W.Byers, "Multicomponent Liquid Ion Exchange with Chabazite Zeolites", ORNLTM 12403(1993).

Fig. 1. X-ray diffraction pattern of synthesized Ni₂Fe(CN)₆.

Fig. 2. Scanning electron micrograph of synthesized $Ni_2Fe(CN)_6$.

Fig. 3. Experimental data and predicted equilibrium isotherms for Ag^+ ion in Ni-Ag system with Ni₂Fe(CN)₆.

Fig. 4. Experimental data and predicted equilibrium isotherms for Cs^+ ion in Ni-Cs system with Ni₂Fe(CN)₆.

Fig. 5. Adsorption equilibrium models for Ag^+ ion in Ni-Ag system with Ni₂Fe(CN)₆.

Fig. 6. Adsorption equilibrium models for Cs^+ ion in Ni-Cs system with Ni₂Fe(CN)₆.

pH Ions	2	3	4	5
Ag ⁺ ion	24796	93055	174122	230035
Cs ⁺ ion	2872	877	831	803

Table 1. Distribution coefficient for Ag and Cs ions with $Ni_2Fe\,(CN\,)_6.$

Table 2. Adsorption model parameters for $A\,g^{\scriptscriptstyle +}$ and $C\,s^{\scriptscriptstyle +}$ ions with $Ni_2Fe(CN)_6.$

Model	Coefficient	Single component system			
	Units	Ag	Cs		
	$Q_m [meq/g]$	8.08	1.34		
Langmuir	b[mL/meq]	7946.80	39.81		
	\mathbf{r}^2	0.87	0.78		
	K[mL/meq]	14.64	2.26		
Freundlich	n	4.80	2.99		
	r ²	0.87	0.96		
Duhinin	$Q_m [meq/g]$	11.58	1.94		
Dubinin-	k	1.92*10-9	4.51*10-9		
Polyani	r^2	0.87	0.91		

Table 3. Parameters for modified Dubinin-Polyani isotherm equation.

Coefficients Isotherms	bo	b 1	b2	\mathbf{R}^2
Ag^+ ion	1.934	- 0.163	- 0.031	0.86
Cs ⁺ ion	1.369	0.631	0.033	0.98