'00

A Study of Fluid Flow and Differential Pressure on Disk during the Motor Operated Valve Operation

, , , , 103-16

가

가

FLUENT

가

Flowmaster

Abstract

A differential pressure during the operation of MOV (motor operated valve) is one of the most important parameters for the evaluation of required stem thrust.

Most MOV applications can be approximated as being steady state since the valve stroke times are long and the ensuing flow acceleration /deceleration effects are small. However, for the some rapid closing valve, flow acceleration/deceleration effects may have to be accounted for. Under such condition, the pressure is higher than steady state pressure build up during a closing stroke.

In this study, we performed the analysis for the one valve, which is a rapid closing MOV in nuclear power plant. The velocity distribution and fluid flow pattern were analyzed by using FLUENT code. and differential pressure profile were analyzed by using Flowmaster code. The calculation result by Flowmaster code was very similar to the differential pressure of the field test.

1.

(MOV : Motor Operated Valve)

MOV . MOV MOV MOV MOV . MOV가 MOV 가 . MOV MOV MOV / MOV MOV MOV 가 가 MOV piping system FLUENT 1 Flowmaster

2.

L

Fig. 2-1 Grid generation of horizontal channel

Table 2-1 Boundary conditions for analysis of horizontal channel

Inlet velocity (ft/s)	11.85	Fluid temperature()	102
Characteristic length (ft)	0.833	Channel wall	heat flux = 0
Turbulent intensity (%)	5	Disk wall	heat flux = 0

(2-1) .

,

$$\frac{\partial}{\partial t}(\rho\phi) + \frac{\partial}{\partial x_{i}}(\rho u_{i}\phi) = \frac{\partial}{\partial x_{i}}(\Gamma_{\phi}\frac{\partial\phi}{\partial x_{i}}) + S_{\phi}$$
(2-1)

(Convection term),(Diffusion term),(Source term).
$$\phi$$
 ϕ =1, ϕ 7, ϕ 7, ϕ 7, ϕ 7, ϕ 7.. Γ_{ϕ} S_{ϕ} ..(FVM : Finite Volume Method)(2-2)

$$\phi_p \sum_i (A_i - S_p) = \sum_i (A_i \phi_i) + S_c$$
(2-2)

.

,		Power-law		SIMPLE	
		k -	,	,	(U,
V) フト	(Dissipation)	Normalized residual	10 ⁻⁵		
2-3					
MOV	가	50%, 90%, 98%			

(jet) 7¦,

Fig. 2-2 Velocity distribution contour of channel at 50% disk position

Fig. 2-3 Velocity distribution contour of channel at 90% disk position

Fig 2-4 Velocity distribution contour of channel at 98% disk position

3. MOV

T

MOV

()

	(Bernoulli equa	tion)
[3-1], equation) .		(Friction losses
가 ,		
$\Delta P = \left(p_1 + \rho \frac{U_1^2}{2} \right) \left(p_2 + \rho \right)$	$\frac{U_1^2}{2} + \rho g(z_1 - z_2) $ (3-1)	
	가 ,	
	, ,	
MOV가		•
	MOV MOV (,)
(,) MOV	(, ,)	, 가
Elec Flow Model), Westinghouse TREMOLO ,	ctric Power Research Institute (EPRI) NEWFAC Fauske & Associates, Flowmaster기 . 기 MOV	SFM (System Inc. Flowmaster
3.1 Flowmaster Elow	vmaster International I td	Pining
riowindstor rio	Piping System 1	i iping
가	, Piping System Design ,	,
Flowmaster		
	, (, ,) ((, ,
)		
(str	oke position) 7.	
	(blow dow n)	, 7ŀ
	, , ,	21
subcooled water, flashing 가 ,	water, steam, two-phase steam water mixture two-phase flow 7	
(Fluid Inerti	a) .	
	, 가.	,
3.2 MOV		
MOV	Westinghouse gate 10inch M	IOV
. MOV	(stroke time = 10sec) ,	

3-1 .

I.

Table 3-1

MOV	Westinghouse gate	<pre>pump shutoff head(ft)</pre>	345
(inch)	10	pump runout head(ft)	210
stroke time(sec)	10	suction pressure(psia)	23
MOV (ft)	42	suction tank (ft)	23
(gpm)	2900gpm	discharge tank (ft)	46

.

3.3	(Trasient stat	e)				
N	AOV			,		MOV
			. MOV			
	wave speed가	, Flowmaster				elastic pipe
	, wave propagation		Joukowsky equation		[3-2]. Elastic pipe
	MOV	wave speed	l MOV			,
	(3-3)					
	Joukowsky equation : 🛆	$p = \rho a \Delta v$	(3-2)			

 Δp = change in flow pressure a = wave speed (m/s) Δv = change in flow velocity (m/s)

Elastic pipe criteria :
$$t \le 10\left(\frac{2L}{a}\right)$$
 (3-3)

t : valve stroke time
L : pipe length
a : wave speed

3.4

.

Fig. 3-1		. MOV	1	11 (10)
	, MOV			2900gpm
0gpm			가	가 1
가		(207psid)		
	(shutoff)			(140psid)
,	67p sid			
Fig. 3-2		, MOV		0gpm
	2900gpm 7	ŀ.		(140psid)
フト,		,		
Fig. 3-2 7ŀ,	2900gpm 7	, MOV 		Ogpm (140psid)

•

Fig. 3-1 Differential pressure profile for valve closing stroke time

Fig. 3-2 Differential pressure profile for valve opening stroke time

T able 3 - 2

•

		Flowmaster	(%)
(psid)	150	140	9.3
(psid)	185	207	8.9

4.

가	MOV	Flowmaster
가		,

.

5.

T

- 1) EPRI, 1990, "Application guide for Motor Operated Valves in Nuclear Power Plant, Final Report", NP-6660-D
- 2) EPRI, 1994, "MOV Performance Prediction Program, System Flow Model Description Report", TR-103225
- 3) D.S Miller, 1986, "Internal Flow System"
- 4) E.B.Wylie, 1993, "Fluid Trasients in Systems"
- 5) John Parmakian, 1955, "Waterhammer Analysis"
- 6) Flowmaster UK Ltd., 1997, "Flowmaster2 New User Training Course for Single Phase and Fluid Power users"
- 7) FLUENT Inc., 1996, "FLUENT Tutorial Guide/User's Guide manual"