CONTAIN 2.0 KAEVER - ISP44

Analyses of the Accuracy of Calculated Results Obtained by CONTAIN 2.0 Code for the KAEVER Aerosol Tests - ISP44

,

1

,

OECD-CSNI	-44(ISP44)	KAEVER	(K123A,
K148A, K186A, K188A)	CONTAIN 2.0		
		가	
가			
가 CsOH			
	CsI		
Ag			
CsOH	Ag		

Abstract

CONTAIN 2.0 code has been employed to simulate the KAEVER Test series K123A, K148A, K186A, K188A that were proposed as International Standard Problem-44 by OECD/CSNI, and the accuracy of the calculation results has been analyzed. All of these tests were conducted to investigate the behavior of the aerosol depletion with steam condensing on the particle surface under highly saturated steam conditions. The code predicts considerably slower aerosol depletion than the experiment for the CsOH aerosol which is highly hygroscopic, and also showed very similar results for the CsI aerosol which is moderately hygroscopic. For the Ag aerosol which is non-hygroscopic, however, the code predicts much faster depletion compared with the experimental data. For the mixed aerosol of hygroscopic CsOH and non-hygroscopic Ag, the calculation results show the same depletion pattern for both components, which is different from usual anticipation, and do show remarkably slower depletion compared with the experimental data.

'2000

가가 ISP37[2] . ISP37 .[1] NaOH Battelle Model Containment VANAM M3[3] . ISP37 NaOH 가 가 . 가 GRS OECD/CSNI 가 KAEVER . KAEVER(Kernschmelz AErosol VERsuche - Core Melting Aerosol Experiment)[4] Batelle LWR , , 32 CsOH, . KAEVER , CsI, SnO_2 (RH=0%), Ag =100%), <100%), (>100%) ((가 OECD/CSNI KAEVER K123A, K148A, K186A, K187A, K188A 가 (International GRS 가 Standard Probem-44) . 2000 1 1 가 ISP - 44 [5] CD-ROM 가 . K187A open problem 가 CD-ROM , K187A blind problem ISP44 가 (K188A), KAEVER CsOH . CsI (K123A), (K148A), CsOH Ag Ag (K186A), CsOH CsI (K187A)가 Ag . 가 ISP37 CONTAIN 2.0 [6] ISP - 44 open problem . CONTAIN 2.0 .

가

가 .

2. KAEVER

L

1.

1

가 · 가 가 2090mm, 2500mm, $10.6 m^3$ 475mm, 1900m m . 가 가 $^+$ + +). (1 $2 \mathrm{m}\,\mathrm{m}$ (1) , ISP44 [5] , 가 KAEVER 1 . 가 1 . 1 10 2 가 가 . 2 가 가 . K123A 2 . 가 가 가 가 . 2 가 • KAEVER 가 , K123A KAEVER CD-ROM [7] 1 . 1 2 . 3. CONTAIN 2.0 가 KAEVER

cell (cell-1). cell (cell-2).

cell-2 engineered vent . 7

cell-1

cell 1 low cell . 2 pool CONT AIN cell . ISP44 , pool 가 가 pool • ISP44 , , $2 \mathrm{mm}$. 2 engineered vent GRS가 3 . . 1.0×10^{-8} - 1.0×10^{-4} m 10 .

[7] .

4.

L

4.1 K123A- CsI 3 K123A CsI . 가 가 가 4 102-105 °C . 8 115 °C . 2.5 가 가 . . 5 가 가 . CsI 가 100% 가 . CONTAIN 2.0 CsI . 4.2 K148A - Ag K148A Ag

6 7 . 10 가 가 . 가

.

가 • 8 Ag . 가 CONT AIN . K148A . 가 가 . . Kelvin CONTAIN Kelvin 가

. 4.3 K188A- CsOH CsOH

. 9 10 . 가 .

K188A

.

K123A . engineered vent . $4.0x \ 10^{-4}$ 11 . kg/m^3 $2.5 \times 10^{-4} \text{ kg/m}^{3}$ 1 40 CsOH

가 가 CsI CsOH .

4.4 K186A- CsOH+Ag Ag 가 CsOH

, CsOH가 1 6 1 40 Ag 40 2 13 . 12 13 1 30 . 가 가 3 20 . • 14 .

.

.

.

.

. 가 CsOH .

- J. H. Wilson and P. C. Arwood, "Comparison of predictions of aerosol codes with measurements in LWR aerosol containment experiments LACE test LA4", LACR TR-084, ORNL, 1990.
- [2] M. Firnhaber, T. F. Kanzleiter, S. Schwartz, and G. Weber, "International Standard Problem ISP37, VANAM M3 - A multicompartment aerosol depletion test with hygroscopic aerosol material", OECD/NEA, NEA/CSNI/R (96)26, 1996.
- [3] T. Kanzleiter, "VANAM Multi-component Aerosol Depletion Test M3 with soluble Material", BleV-R6.098-304, Batelle-Institut e.V., Frankfurt am Main, 1993.
- [4] G. Poss, D. Weber, "Versuche zum Verhalten von Kernschmelzaerosolenim LWR-Containment", Batelle Abschlubbericht, BF-R-67863, May, 1997.
- [5] M. Firnhaber, K. Fischer, B. Fritsche, "Draft Specification of the International Standard Problem ISP No 44", GRS, 1999.
- [6] K. K. Murata, et al. "Code manual for CONTAIN 2.0: A computer code for nuclear reactor containment analysis", Sandia National Laboratory NUREG/CR-6533, SAND97-1735, 1997.

:

[7] , " 8

", CARR/SDSA-0001, 2000.

1 KAEVER

		K123A	K148A	K 188A	K 186A
	(°C)	104	92	109.5	97.8
(bar)		1.1	1.04	1.09	0.99
	(%)	87	116	93	110
pool	(kg)	0	290	4.6	67.3
pool	(°C)	101	80	101	94.1
	(°C)	23	20	20	22

	K123A	K148A	K 188A	K186A
Aerosol Material	CsI	Ag	CsOH	CsOH+Ag
volume median particle diameter(µm)	1.634	0.996	0.37	0.567
number median particle diameter(µm)	0.691	0.516	0.26	0.402
particle size distribution	LN^*	LN	LN	LN
geometric standard deviation	1.80	1.4	1.45	1.2
dry density (kg/m ³)	4510	10510	3675	same as
molecular weight (kg/kmol)	260	108	150	K188A &
surface tension (Kelvin effect) (N/m)	none	0.0512	none	K148A
solubility factor	1.7	none	2.0	//
dynamic shape factor	1.0	1.0	1.0	//
agglomeration shape factor	1.0	1.0	1.0	//
* LN = log-normal	•	•	•	•

3 GRS가

	2.7			
(m ²)	5.6E-7	2.6E - 7	10.2E - 7	1.4E - 7
	K123A	K 148A	K 188A	K 186A

1 KAEVER

cell 2

T

K123A CsI 4

6 K148A Ag

T

8 K148A Ag

T

12 K186A CsOH+Ag

14 K186A CsOH+Ag