Assessment of Reflood Heat Transfer Model of COBRA-TF Against ABB-CE Evaluation Model

, , , , ,

150

	ABB-CE	MOD-2C			COBRA-TF가	10 CFR 50,	Appendix K
			가	. App	endix K		
	가	(Evalı	uation Mo	odel)			FLECHT
					. ABB-CE		
	CO	MPERC-II		FLELAPC HTCOI			
STRIKIN-II							가
COBRA-TF]	FLECHT			NF	.C가	ABB-CE
MOD-2C				•	, COBRA	-TF	가
		, ABB-CE	MOD-2	2C			
	COBRA-TF				Appendix K		

Abstract

According to 10 CFR 50 Appendix K, ECCS performance evaluation model should be based on the experimental data of FLECHT and have the conservatism compared with experimental data. To meet this requirement ABB-CE has the complicate code structure as follows : COMPERC-II calculates three reflood rates, and FLELAPC and HTCOF calculate the reflood heat transfer coefficients, and finally STRIKIN-II calculates the cladding temperature using the reflood heat transfer calculated in previous stage. In this paper, to investigate whether or not COBRA-TF satisfies the requirement of Appendix K, the reflood heat transfer coefficient of COBRA-TF was assessed against ABB-CE MOD-2C model. It was found out that COBRA-TF predicts properly the experimental data and has more conservatism than the results of ABB-CE MOD-2C model. Based on these results, it can be concluded that the reflood heat transfer coefficients calculated by COBRA-TF meet the requirement of Appendix K.

10 CFR 50 Appendix K 가 가 가 . Appendix K : 1 가 FLECHT [1] FLECHT . WCAP-7544 [3] 7931 [4] • FLECHT FLECHT •

• 1 アト , , . .

ABB-CE WCAP-7931 [4] ("new" FLECHT heat transfer correlation) MOD-1C , CE [5]. FLECHT

/ , , , , . 5 . ABB-CE 7[†] [5], ABB-CE MOD-2C 7[†] COMPERC-II[6] , FRELAPC [7] HTCOF[6]

 STRIKIN-II[8]가
 .

 COBRA-TF[9]
 가

 . COBRA-TF
 3

 . COBRA-TF
 3

 가
 . COBRA-TF

 FLECHT

 SEASET [10]

.

COBRA-TF가

가 FLECHT ABB-CE MOD-2C 10 CFR 50 Appendix K COBRA-TF . 가 가 가 . 가 COBRA-TF 10 CFR 50 Appendix K , FLECHT ABB-CE MOD-2C , 가 .

2. COBRA-TF FLECHT

COBRA-TF		FLECH	Т		
FLECHT	7x7	10x10	가	heater	
COBRA-TF				21	
					COBRA-TF
Grid			10	CFR 50 Appendix K	Grid
					. FLECHT
Grid				가	. 가
			1	. FLECHT	

:

- Effect of Height Effect
- Effect of Flooding Rate
- Effect of Clad Material (Zr-4 vs Stainless Steel)
- Effect of Initial Clad Temperature
- Effect of Peak Power
- Effect of Coolant Subcooling
- Effect of Pressure

2.1 Effect of Height

FLECHT run 6948			COBRA-TF ABB-CE			MOD-2C		
			1	FLECHT run	6948			,
2	ABB-CE	MOD-2C				1	COBRA-TH	ジト 2 ft
		Quenching				가	, 6 ft	
			. 10 ft	10	00		COB	RA-TF
가				,				
				. CC)BRA-T	F		
	10 ft	375		Quenching			COBRA-TF	
400	Que	enching						

2 COBRA-TF 6 ft 10 ft 7 ABB-CE MOD-2C . COBRA-TF 7 NRC7 ABB-CE MOD2C

2.2 Effect of Flooding Rate

3 Flooding rate FLECHT COBRA-TF 가 Flooding rate가 가 가 가 • Flooding rate가 가 가 entrainment . 가 . Flooding rate가 . COBRA-TF , 5.9 in/s 20 . , . 20 / , 가 가 가 Quenching 가 . 5.9 in/s 3.9 in/s transition regime 가 film boiling regime COBRA-TF . 4 Flooding rate ABB-CE MOD-2C COBRA-TF . 가 • 가 ABB-CE MOD-2C COBRA-TF Flooding rate .

2.3 Effect of Clad Material

5	Zircaloy(Zr)	Stainless	Steel(SS	S) Clad				
COBRA-TF					Zr		가 SS	
			Zr	Heat capacity가	SS	15%	,	Zr
가				. FLECH	Г		[1],	, Zr
Quench front	7	SS	. Qı	uench front			가	가
			Zr	가		•	SS	
				가				
Zr	가	SS		. COBRA-TH	7			

	. CODIM II
. Zr	가 SS

2.4 Effect of Initial Clad Temperature

.

6			
COBRA-TF			

가

가 .

7 COBRA-TF

7ABB-CEMOD-2CCOBRA-TF.ABB-CEMOD-2C...COBRA-TF71ABB-CEMOD-2C.

2.5 Effect of Peak Power

.

8 Peak Power COBRA-TF 70 Peak power heater 가 가 Peak power 가 가 가 가 가 . 70 . COBRA-TF Peak power가

y Peak Power ABB-CE MOD-2C COBRA-TF .

. COBRA-TF 가 / ABB-CE MOD-2C .

. ABB-CE MOD-2C Quenching 가 COBRA-TF Quenching 가 가 가 . COBRA-TF , ABB-CE MOD-2C 가 . COBRA-TF가 Quenching ABB-CE MOD-2C

.

COBRA-TF

2.6 Effect of Coolant Subcooling

.

10 COBRA-TF Subcooling . 가 가 . . subcooling 가 가 가 . , Quenching front7 Subcooling ,

가 Quenching time . COBRA-TF ΔT_{sub} 16 °F 가 COBRA-TF , COBRA-TF 가 11 Coolant subcooling ABB-CE MOD-2C COBRA-TF . COBRA-TF 가 ABB-CE MOD-2C . 2.7 Effect of Pressure 12 COBRA-가 . TF 가 : $h = q"/(T_{\text{clad}} - T_{\text{sat}})$ 가 T_{sat}가 가 가 가 . COBRA-TF 56 psia 90 psia가 , COBRA-TF 90 psia가 13 ABB-CE MOD-2C COBRA-TF COBRA-TF 90 psia . 가 ABB-CE MOD-2C . Reflood 50 psia , COBRA-TF 가 . 3.

TF FLECHT 가 ABB-CE가 NRC MOD-2C COBRA-TF 가 . 가 COBRA-TF FLECHT ,

CE MOD-2C COBRA-TF 가

가, COBRA-TF 10 CFR 50 Appnedix K

- 1. WCAP-7665, "Full Length Emergency Cooling Heat Transfer(FLECHT) Final Report," April 1971
- 2. WCAP-7435, "PWR Full Length Emergency Cooling Heat Transfer(FLECHT) Group I Test Report," January 1970
- 3. WCAP-7544, "PWR Full Length Emergency Cooling Heat Transfer(FLECHT) Group II Test Report," September1970
- 4. WCAP-7931, "PWR FLECHT Final Report Supplement," October 1972
- 5. CENPD-132P, "Calculative Methods for C-E Large Break LOCA Evauation Model, Vol.1, "August, 1974, pp III-D. 6-3.
- 6. CENPD-134P, "COMPERC-II, A Program for Emergency Refill-Reflood of the Core," February, 1975.
- 7. LOCA-76-349, "FRELAPC: An Analytical FLECHT ROD Elevation and Power Correction Program," T. C. Kessler
- 8. CENPD-135P, "STRIKIN-II, A Cylindrical Geometry Fuel Rod Heat Transfer Program," August 1974
- 9. NUREG/CR-3046, "COBRA/TRAC Manual," Volumes 1-5, Thurgood, M. J. et al, March 1983
- NUREG/CR-4166, "Analysis of FLECHT SEASET 163-Rod Blocked Bundle Data Using COBRA-TF," Hochreiter, L. E. et al, January 1986.

1 COBRA-TF 가 FLECHT

FLECHT	Clad	Initial Clad	Flooding	Peak	Initial Coolant	Pressure
Run No.	Material	Temperature(F)	Rate(in/s)	power	Temperature(F)	(psia)
				(kw/ft)		
6948	SS	1615	1.0	1.24	146	58
6155	SS	2212	5.9	1.24	150	60
6256	SS	2199	3.9	1.24	159	60
7158	SS	2156	2.0	1.24	144	54
2443	Zr-4	2004	10.0	1.24	150	56
0509	SS	1990	9.9	1.24	154	58
6948	SS	1602	1.0	1.24	146	58
6351	SS	1795	1.0	1.24	150	60
6553	SS	2012	1.0	1.24	140	61
4129	SS	1603	1.9	1.40	159	60
4225	SS	1605	1.9	1.24	153	59
4027	SS	1603	1.9	0.69	148	57
3920	SS	1608	5.8	1.24	271	55
4718	SS	1610	5.9	1.24	210	55
3541	SS	1598	5.9	1.24	148	57
0711	SS	1600	5.9	1.24	75	15
1002	SS	1605	6.0	1.24	151	56
1417	SS	1611	5.8	1.24	170	90

1 FLECHT run 6948

(2ft, 6 ft, 10ft)

COBRA-TF

2 FLECHT run 6948 (2ft, 6 ft, 10ft) ABB-CE MOD-2C COBRA-TF

4 Flooding rate

ABB-CE MOD-2C COBRA-TF

FLECHT

COBRA-TF

7

ABB-CE MOD-2C

8 Peak Power COBRA-TF

9 Peak Power ABB-CE MOD-2C

COBRA-TF

10 Coolant subcooling COBRA-TF

COBRA-TF

12 Pressure

COBRA-TF

ABB-CE MOD-2C

COBRA-TF