'2000

Hump Alloy 600

Stress Corrosion Crack Tests of Alloy 600 with Hump specimens

, , ,

150

Abstract

CERT tests with hump specimens are useful to determine the IGSCC susceptibility of an alloy 600 specimen within a short time period in various corrosion environments. Stress corrosion crack tests with constant elongation rate tester were carried out for the hump specimens of different radius curvature in various environment. IGSCC susceptibility was evaluated based on the shape of load-deformation curve and the morphology of fracture surface. It was observed that IGSCC susceptibility of a hump specimen was significantly affected by the radius of curvature and the related deformation behavior of grains around the bended area of hump specimen. Interrupt tests were carried out to determine the crack initiation time during the CERT tests. It was considered that the crack initiation occurs at the maximum load of load-deformation curve.

2	
4	٠

				CERT (c	onstant elongati	on rate test)
		1		Alloy 600 h	ump	2.5 x
10 ⁻⁷ /sec						1.
	A, B		1)	, 2) 360 ,	, 3)	250 ,
	, 4) 25				. hptest-1	hptest-9
			2	. CERT	, SEM	
		-		,		
				, 가 .		

3.

.

hptest-1	hptest-9	Alloy 600	2.5x 10-7/ sec	
	2		. 2	
100	150		250	
	. 3	60		

2 hptest-1 hptest-4 - . 360 hptest-1 hptest-3 - 250 hptest-2 hptest-4

•

hptest-9 hptest-7

.

가

•

			•	nptest-3	
1	0				
. hptest-5	5				
	-				
가					
	hptest - 1	-			
5.					
1)				7	•
2)					
3).	-				

hotest 5

hptest-1

hptest-3

1. P. L. Andresen and T. P. Diaz, "The Effect of Zinc Additions on the Grack Growth Rate of Fe and Ni-Base Alloys in 288 Water," CORROSION/93, paper no. 184, Houston, TX, NACE, (1993).

2. J. N. Esposito, G. Economy, W. A. Byers, J. B. Esposito, F. W. Pement, R. J. Jacko, C. A. Bergmann, "The Addition of Zn to The Primary Reactor Coolant for Enhanced PWSCC Resistance," Proceedings of Fifth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, p. 495, American Nuclear society, La Grange Park, IL(1992)

3. T. M Angeliu and P. L. Andresen, "Effect of Zinc Additions on Okide Rupture Strain and Repassivation Kinetics of Iron Based Alloys in 288," Corrosion Science, 52, p. 29, (1996).

4. R. S. Pathania et al., "Evaluation of Zinc Addition to the Primary Coolant of Farley-2 Reactor," Proceedings of the Seventh International Symposium on Environmental Degradation Of Materials in Nuclear Power Systems-Water Reactors, Breckenridge, Colorado, August 1995, p. 163. NACE International.
5. N. totsuka, Corrosion, Vol. 43, No. 8, August 1987 p. 505.

Fig. 1 Geometry of hump specimen

Table 1. Mechanical	properties	of tested	materials
---------------------	------------	-----------	-----------

Materials (ASTM B- 167)	Heat No.	Tensile Strength (Kg/mm^2)	Yield Strength	Elong. (%)	Heat Treatment	Grain Size (ASTM No.)
А	6028 x 0.04 PAL	64.00	34	45	not known	
В	906007	66.20	29.58	46.00	960C x 10min	6.89

Table	2.	Hump	test	condition	and	results
-------	----	------	------	-----------	-----	---------

Test No.	Mat.	Temp. (C)	Eω	time to Fracture (hours)	elong.at Fracture (mm)	Elong. (%)	Frac. mode	Max. stress (kg/mm^2)	Test Stop	Radius of curvature (mm)
hptest-1	Α	360	water(DO: sat.)	103	2.79	9.3	IG+TG	12.23	non stop	0.22
hptest-2	А	25	air		3.75	12.5	ductile	37.69	non stop	0.22
hptest-3	А	360	water(DO<10ppb)	119	3.2	10.7	IG+TG	13.56	non stop	0.22
hptest-4	А	250	water(DO<10ppb)	143	3.85	12.8	ductile	32.27	non stop	0.22
hptest-in	А	360	water(DO;sat.)					16.95	Interrupt	0.22
hptest-5	В	360	water(DO;sat.)	144	3.75	12.5	IG+duct.	23.50	stop once	0.48
hptest-6	В	360	water(DO;sat.)	148	3.6	12.0	IG+duct.	28.35	stop once	0.48
hptest-7	В	360	water(DO;sat.)	120	3.24	10.8	IG+duct.	24.25	non stop	0.48
hptest-int2	В	360	water(DO;sat.)					23.13	Interrupt	0.48
hptest-9	A	360	water(DO;sat.)	146	3.93	13.1		35.25	non stop	0.42

Fig. 2 Load - displacement curves of Hump tests(hptest1~hptest4)

a) Tensile test, 25C, air

b) CERT test, 360C, oxygen saturated water, 2.5 x10⁻⁷
 Fig.3 Comparison of fracture surfaces of hptest-1 and hptest-2

- a) Hptest-1(360C, oxygen Saturated water) b) Hptest-2 (25C, air)
- c) Hptest-3(360C, deaerated water) d) Hptest-4 (250C, deaerated water, DO<10ppb)

Fig. 4 Shape of deformation of hump test(hptest-1~hptest4)

Fig. 5 Microstructure of notch area and Load - displacemen curve after Interrupt test1 for observing the crack initiation in hump specimen

Fig. 6 Microstructure of notch area and Load-displacemen curve after Interrupt test2 for observing the crack initiation in hump specimen

Fig. 7 Radius of curvature of hump test specimens

Fig. 8. Shape of deformation of grain after bending of hump specimen

Fig. 9. Load - deformation curve of hump tests(hptest - 1, 3, 7, 9)

Fig. 10. Fracture surface of hptest-7 which show mixed mode of fracture (a)ductile and b)brittle)