'2000

KALIMER

Abstract

A study was performed to investigate potential design options for the maximum reduction of sodium void worth by evaluating various design options such as core pancaking by the core height reduction and alternative core configurations with the addition of axial blankets and sodium filled upper fission gas plenum(UFGP) in the reference KALIMER core envelope characterized by its high breeding ratio. From the exploratory search of various design options, the radially heterogeneous core that is designed with the reduction of driver fuel fissile height only by 20 cm and the replacement of the drive fuel removal with 20- cm thick sodium filled UFGP was determined to be the best candidate in achieving the sodium void worth reduction. The sodium void worth reduced core has a breeding of 1.16 and the sodium void worth reduction from 1377 pcm to 1193 pcm in case of whole sodium voiding in fuel and blaket assemblies including the sodium filled UFGPs. The burnup reactivity swing is increased from 632 pcm to 1343 pcm and there exists a strong tradeoff between the sodium void worth reduction and the core nuclear performance degradation especially in burnup reactivity swing.

1.

가

,

•

가

.

20 cm , UFGP . 1.3

20 cm , 가 (H100IB120) 가 1.3 (H120ABX) 가 가 4 GEM (H120ABX) 가 1377 pcm 1093 pcm , 5 GEM 376 pcm 202 pcm . , 가가 632 pcm 1343 pcm 가 가 가 가 가 trade- off 6 . 1.16

133.6 MWD/kg 16.7 MWD/kg 7⊦ , fissile 1134.7 kg 118.6 kg .

3. 7ŀ ?ŀ.

가 가 가 (HOC) (RHC) (AHC) (HOC) 7 [5] • 18 66 2 • (RHC) (AHC) HOC 20

・ ・ 2 (RHC) (AHC) , (HOC) ・ 7

 (RHC)
 (AHC)
 , AHC

 ブ
 TRU
 .

 ,
 ブ
 ブ

 ,
 ブ
 .

 AHC(D66H 120)
 ブ
 ブ

.

	RHC가 AHC		, RHC			가	
AHC	7	ŀ.					
. 2	(HOC) HOC	2		가	TRU		(RHC)
, fissile 71	71						
АНС	, 7ŀ	RHC			가	가	RHC7F
. ,				,	НОС	: 가	
7ŀ	,	가					(RHC)
	,		(fissile)	가 100 cm	가		(RHC)
·			20 cm				가
,	· ,				71;	7}	,
4. 가							
(UFGP)				가		가	
		, ,		(가 (fissile)		· 가
20) cm		UFC	3P			

 DFGP

 7!
 .

 1.18
 1.16

 ,
 UFGP

 7!
 1377 pcm

 1093 pcm
 .

 632 pcm
 1343

trade- off .

.

- [1] 2 , "Development of 150 MWe LMR Conceptual Nuclear Design with Breeding Characteristics," '99 , (1999).
- [2] Y. I. Kim, "KALIMER Breeder Equilibrium Core Conceptual Design and Analysis," LMR/CD120-ER-01 Rev. 0/99, KALIMER Internal Document, KAERI (1999).
- [3] K. L. Derstine, "DIF3D: A Code to Solve One-, Two-, and Three-Dimensional Finite-Difference Diffusion Theory Problems," ANL-82-64, ANL (April 1984).

,

- [4] 2 , " ," '98 (1988).
- Y. I. Kim, "Conceptual Design of KALIMER Uranium Metallic-Fueled Core," KAERI/TR-1279/99, KAERI (1999).

1	
T	٠

1		1
I	•	I

Case	Reference H120ABX	H100ABX	H80ABX	H60ABX
Geometry Parameters Core Height (H) (cm) Axial Blanket Thickness (cm) Upper Fission Gas Plenum Length (cm) (Na filled) Equivalent Core Diameter (D) (cm) H/D Ratio <u>Performance Parameters</u> TRU Enrichment (wt. %) Breeding Ratio Burnup Reactivity Swing (pcm) Peak fuel Discharge Burnup (MWD/kg) Fissile Inventory (kg) BOEC EOEC Peak Linear Power (W/cm) Na Void Worth (pcm) Case 1 ¹⁰ : BOEC EOEC Case 2 ²⁰ : BOEC EOEC	120 0 20.0 144.5 0.83 26.30 1.18 632 116.9 1253.3 1288.3 286.5 1773 1948 1222	100 0 20.0 144.5 0.69 29.08 1.11 1365 134.9 1103.7 1125.8 322.4 1472 1676 747	80 0 20.0 144.5 0.55 34.44 1.01 2522 162.1 949.7 955.3 387.8 1107 1340 25	60 0 20.0 144.5 042 45.16 0.88 4524 207.9 794.1 776.4 497.2 652 916 - 1044
	13//	927	200	- 923

1) Case 1 : (DF + IB + RB) voiding withour UFGP voiding, fissile height voiding only

2) Case 2 : (DF + IB + RB) voiding and UFGP voiding

1	2
T	.2

Case	Reference H120ABX	H 100ABX	H80ABX	H60ABX
Geometry Parameters				
Core Height (H) (cm)	120	100	80	60
Axial Blanket Thickness (cm)	20.0	20.0	20.0	20.0
Upper Fission Gas Plenum Length (cm) (Na filled)	0.0	0.0	0.0	0.0
Equivalent Core Diameter (D) (cm)	144.5	144.5	144.5	144.5
H/D Ratio	0.83	0.69	0.55	042
Performance Parameters				-
TRU Enrichment (wt. %)	26.30	26.89	30.21	36.64
Breeding Ratio	1.18	1.28	1.23	1.15
Burnup Reactivity Swing (pcm)	632	1181	2174	3714
Peak fuel Discharge Burnup (MWD/kg)	116.9	131.6	155.3	193.7
Fissile Inventory (kg)				
BOEC	1253.3	1192.3	1061.8	935.8
EOEC	1288.3	1245.1	1104.5	964.3
Peak Linear Power (W/cm)	286.5	316.6	376.4	472.9
Na Void Worth (pcm)				
Case 1^{1} : BOEC	1773	1472	1087	625
EOEC	1948	1724	1400	1009
Case 2^{2} · BOEC	1222	1313	849	249
FOEC	1377	1565	1163	637
EOLC				

1) Case 1 : (DF + IB + RB) voiding except for reference core case, fissile height voiding only

2) Case 2 : (DF + IB + AB + RB) voiding

	-
- 1	- 72
- 1	
_	. •••

Case	Reference H120ABX	H 100ABX	H80ABX	H60ABX
<u>Geometry Parameters</u> Core Height (H) (cm) Driver Fuel (H1)	120	100	100	20
Internal Blanket (H2)	120	120	100	80
H 1/H2	1.00	0.86	0.83	0.80
Axial Blanket Thickness (cm)	1.00	0.00	0.03	0.80
Upper Fission Gas Plenum Length ¹⁾ (cm) (Na filled)	20.0	20.0	20.0	20.0
Equivalent Core Diameter (D) (cm)	144 5	144 5	144 5	144 5
H/D Ratio	0.83	0.87	0.73	059
Performance Parameters	0.00	0.07	0110	007
TRU Enrichment (wt. %)	26 30	25.84	28.29	32.83
Breeding Ratio	1.18	1.22	1.16	1.07
Burnup Reactivity Swing (pcm)	632	620	1343	2495
Peak fuel Discharge Burnup (MWD/kg)	116.9	116.1	133.6	160.4
Fissile Inventory (kg)				
BOEC	1253.3	1278.4	1134.7	931.3
EOEC	1288.3	1320.4	1165.3	1006.7
Peak Linear Power (W/cm)	286.5	276.8	327.0	383.5
Na Void Worth (pcm)				
Case 1^{3} : BOEC	1773	1775	1461	1072
EOEC	1948	1956	1674	1320
Case $2^{(1)}$: BOEC	1222	1451	994	376
EOEC	1377	1626	1093	593
Case $3^{(5)}$: BOEC		1786	1477	1098
EOEC		1968	1692	1349

1) Na filled UFGP locates only above driver fuel assembly

2) An average value is considered for height (H)

3) Case 1 : (DF + IB + RB) voiding without UFGP voiding

4) Case 2 : (DF + IB + RB) voiding and UFGP voiding

5) Case 3 : (DF + IB + RB) voiding without UFGP voiding, fissile height voiding only

-
.,
-

	RHC		нс	АНС	
Case	Reference (D48)H120	(D48)H100IB120	(D66)H120	(D66)H100	(D66)H 120
Core Configuration	Radially Hete.	Radially Hete.	Homo.	Homo.	Axially Hete.
Geometry Parameters					
Core Height (H) (cm)	120/ 120	120/ 100	120/ 120	100/ 100	120/ 100
AB/IB Thickness (cm)	0/0	0/0	0/ 0	20/0	0/20
Upper Fission Gas Plenum Length ¹⁾ (cm) (Na filled)	20	20	20	0	20
No. of Assembly inside R. Blanket	73	73	73	73	73
Equivalent Core Diameter (D) (cm)	144.5	144.5	144.5	144.5	144.5
H/D Ratio	0.83	0.73	0.83	0.69	0.83
Performance Parameters					
Thermal Power (MWt)	382.2	382.2	382.2	382.2	382.2
TRU Enrichment (wt. %)	26.30	28.29			
IC/ OC			15.10/21.52	15.73/22.47	17.70/25.29
Breeding Ratio	1.18	1.16	1.11	1.21	1.10
Burnup Reactivity Swing (pcm)	632	1343	2068	2732	1509
Fissile Inventory (kg)					
BOEC	1253.3	1134.7	1161.1	1119.1	1221.1
EOEC	1288.3	1165.3	1183.3	1159.3	1242.1
Peak Linear Power (W/cm)	286.5	320.0	235.0	267.7	234.9
Na Void Worth (pcm)					
Case 1^{3} : BOEC					
EOEC	1773	1461	1787	1386	1098
Case $2^{(4)}$: BOEC	1948	1674	2028	17 13	1318
EQEC	1222	994	1207	1181	329
$C_{\text{acc}} 2^{5)} : \text{POEC}$	1377	1193	1423	1508	535
	791	495	629	1036	1098
	1043	779	947	1266	1318
Case 4" : BOEC	142	- 68	241	388	329
EOEC	3/6	202	540	586	535

1) Case 1 : (DF + IB/AB + RB) voiding wihout UFGP voiding

2) Case 2 : (DF + IB/AB + RB) voiding and UFGP voiding

3) Case 3 : (DF + IB/AB + RB + GEM) voiding wihout UFGP voiding

4) Case 4 : (DF + IB/AB + RB + GEM) voiding and UFGP voiding

1.

)

(1/6

- - (DF + IB + RB) Voiding without Na Filled UFGP Voiding for Cores Having Different Core Heights

4. UFGP

가

