

Abstract

The use of balloon with radioisotope is a promising method to prevent restenosis after transluminal coronary arterial angioplasty or stent implantation. In this study, we have developed a new radioactive coated balloon, which is prepared by coating the surface of existing balloon with ¹⁶⁶Ho instead of being filled with beta sources which emit high energy beta-particles for the purpose of the delivery of sufficient radiation to the vessel wall. To estimate the safety of ¹⁶⁶Ho-coated balloon, leaching test and radiation resistance test of the balloon were performed. The absorbed dose distributions around the ¹⁶⁶Ho-coated balloon were estimated by means of Monte Carlo simulation and the initial activities for optimal therapeutic regimen were determined on the basis of this results.

'2000

2.

I

- Dose calibrator : Capintec 15R, BIODEX Atomlab 200
- Holmium nitrate pentahydrate, 99.9 % Aldrich
- Tetrahydrofuran (THF) : Merck

- Dimethylformamide (DMF) : Merck
- Polyurethane ()
- Alpha PTCA balloon catheter (amg GmbH)
- Coating device of radioactive balloon

3. 1) ¹⁶⁶Ho coated balloon

 165 Ho(NO₃)₃ : $1.25 \times 10^{13} \text{ n/cm}^2 \cdot \text{sec}$, (¹⁶⁶Ho(NO₃)₃ power : 20MW) (100 mCi/ml) 10 ml vial IR Lamp . THF : DMF (10 : 1) polyurethane 700 mg 1 ml vial 2-3 0.35 ml pyrex ampoule . balloon coating (. 1) ¹⁶⁶Ho

¹⁶⁶Ho-coated balloon

.

THF가

1. ¹⁶⁶Ho-coated balloon

2)	가					
2-1)						
	¹⁶⁶ Ho	balloon				
	37			(1 , 5	, 1)
	1	20%				
		NaBH ₄	Na_2CO_3			

2-2)	(Rad	iation resistance test	of balloon)	
	¹⁶⁶ Ho		가	
		가		37
GBq(1 Ci)	166 Ho(NO ₃) ₃		가	10 atm.
inflation				10 mm
vial				EGS4
code system		1.17MGy		

2)
J)

I.

	coate	ed balloon	catheter	
¹⁶⁶ Ho		-		
	•			EGS4 code system ^(8,9)
_				
2	•		2.4mm,	25mm
				0.5 mm 10
	•			가 .
,				. Soft tissue
				(10)
¹⁶⁶ Ho				
	2.4mm,	25mm		

•

balloon	wire	1 m	nm, 20 mm

2.

4.

••				
ballo	oon		166	Но
balloon	(3).		¹⁶⁶ Ho-coat	ted balloon
10 - 20 µm			matrix ¹⁶	5 Ho(NO ₃) ₃ •5H ₂ O
	¹⁶⁶ Ho r	natrix		
Balloon	$Ho(NO_3)_3$		•	
	¹⁶⁶ Ho-coated balloon	37		1
20%	가			
¹⁶⁶ Ho	balloon	NaBH ₄	Na ₂ CO ₃	
¹⁶⁶ Ho-coated balloon	Но			0.5%
	. ¹⁶⁶ Ho	가	(1 Ci)	
EGS4 code system			2.4mm	7ŀ 25mm
¹⁶⁶ Ho- coated	l balloon		β	
1	2	20 Gy	0.5 mm	target depth
	0.5 mm			23.05 cGy/s
per GBq (0.853 cGy	/s per mCi, uncertaint	y : 0.90%)		20 Gy

13.04 mCi .

¹⁶⁶Ho

12.51 cGy/s per GBq (0.463 cGy/s per $$^{166}\ensuremath{\text{Ho-coated}}\xspace$ balloon

mCi, uncertainty : 1.32%)

•

5.					
¹⁶⁶ Ho	balloon	NaBH ₄	Na ₂	$2CO_3$	10mCi
¹⁶⁶ Ho-coated ba	lloon	(1,5,	, 1)	
40 µCi, 40 µCi	50 µCi			0.5%	
¹⁶⁶ Ho	iquid-filled balloon ⁹⁰ Y, ³² P ¹⁸⁸ R Ho-coated balloon				balloon

180

I.

1. Ueda M, Becker AE, Tsukada T, Numano F, Fujimoto T, "Fibrocellular tissue response after percutaneous transluminal coronary angioplasty, an immunocytochemical analysis of the cellular composition," Circulation 83, 1327-1332(1991).

2. Cereek B, Sharifi B, Barath P, Bailey L, Forrester JS, "Growth factors in the pathogenesis of coronary arterial restenosis," Am J Cordial 68, 24C-33C(1991).

3. Gravanis MB, Roubin Gs, "Histopathologic phenomenon at the site of percutaneous transluminal coronary angioplasty, a problem of restenosis," Hum Pathol 10, 477-485(1989).

4. Johnson DE, Wakely PE Jr, "The morphology of restenosis after coronary artery balloon angioplasty," Circulation 80(suppi 11) II-64(1980).

5. Clowes AW, Schwartz SM,, "Significance of quiscent smooth muscle cell migration in the injured rat carotid artery," Circ Res 56, 139-145(1985).

6. Clowes AW, Reidy MA, Clowes MM, "Kinetics of cellular proliferation after arterial injury, smooth muscle growth in the absence of endothelium," Lab Invest 49, 327-333(1983).

7. Moon DH, Oh SJ, Lee HK, Yi BY, Kim EH, Park SW, "Options in Intracoronary Radiation Therapy," Korean J Nucl Med 33, 209-221(1999).

8. Nelson WR, Hirayama H, Rogers D, "The EGS4 Code System," SLA C R ep ort 265(1985).

9. Nelson WR, Hirayama H, Rogers D, "EGS4 user manual(Appendix2)," SLA C Report 265(1995).

10. K.H. Kim, Y.M. Kim, K.B. Park, "A study on the dose distribution produced by ${}^{32}P$ source form in treatment for inhibiting restenosis of coronary artery," J Korean Med Phys 10(1), 1-7(1999).

6.

1. ¹⁶⁶Ho-coated balloon

T

Target Depth	Absorbed Dose Rate due to β-particles			
(mm)	cGy/s per GBq	cGy/s per mCi		
0.0 - 0.5	23.05	0.853		
0.5 - 1.0	9.61	0.356		
1.0 - 1.5	5.29	0.196		
1.5 - 2.0	3.07	0.114		
2.0 - 2.5	1.8	0.067		
2.5 - 3.0	1.04	0.038		
3.0 - 3.5	0.59	0.022		
3.5 - 4.0	0.32	0.012		
4.0 - 4.5	0.16	0.006		
4.5 - 5.0	0.08	0.003		

2. ¹⁶⁶Ho-coated balloon 20 Gy

20	Gy

•

	*	*		*	*
(sec)	(mCi)	(mCi/cm^2)	(sec)	(mCi)	(mCi/cm^2)
60	39.10	20.75	160	14.67	7.78
70	33.51	17.78	170	13.80	7.32
80	29.33	15.56	180	13.04	6.92
90	26.07	13.83	190	12.35	6.55
100	23.46	12.45	200	11.74	6.22
110	21.33	11.32	210	11.18	5.93
120	19.55	10.37	220	10.67	5.66
130	18.05	9.57	230	10.21	5.41
140	16.76	8.89	240	9.78	5.19
150	15.64	8.30	250	9.39	4.98
*	0.5 n	nm target depth	1		