Development of a Local Parameter CHF Correlation Applicable to SMART Core Conditions

'2000

Abstract

A local parameter CHF correlation is developed for the analysis of SMART core condition which is characterized by the low RCS flow rate. The subchannel analysis code, MATRA, is used for the analysis of the local thermal-hydraulic conditions in the square-lattice test bundles. A correction factor is devised to improve the prediction accuracy at low mass velocity conditions at which the high velocity CHF correlations tend to overpredict the CHF values considerably. In addition, a spacer grid correction factor is introduced for the evaluation of the mixing vane effects on CHF. A new CHF correlation, named SR-1, is fitted by a nonlinear regression technique, and validated by statistical tests and the analysis of parametric trends. The correlation limit DNBRs are evaluated as 1.228 for all data of 2518 points, and 1.331 for low velocity data(G<1500 kg/m²/s) including SMART core conditions.

1.

SMART (System integrated Modular Advanced ReacTor)

가

,

,

L

1	
Т	
	٠

CHF

тs	Conf i gu-	Axial profile	Grid	Heat ed	Rod dia./	Mixing	Pressure	Mass flux	# of
15	ration		[mm]	[m]	[mm]	vane	(bar)	(kg/ m2/ s)	dat a
156	TYP- 5X5	UNI FORM	660	4.27	9.5/12.6	R	103 167	1343 4928	73
157	TYP-5X5	UNIFORM	660	2.44	9.5/12.6	R	103 167	1372 4893	78
158	THM 5X5	UNI FORM	660	2.44	9.5/12.6	R	103 168	3 1342 4713	68
160	TYP-5X5	UNI FORM	559	2.44	9.5/12.6	R	103 167	1369 4874	67
161	TYP- 5X5	UNI FORM	559	4.27	9.5/12.6	R	103 167	1335 4973	70
162	THM 5X5	COSINE	559	4.27	9.5/12.6	R	103 166	5 1340 3403	47
164	TYP- 5X5	COSINE	559	4.27	9.5/12.6	R	103 167	1380 3578	54
13	THM 5X5	UNI FORM	534	3.0	10.8/14.3	Р	70 161	522 3511	88
20	TYP-5X5	UNI FORM	545	3.0	9.5/12.7	S	70 165	1094 3665	61
29	TYP-5X5	UNIFORM	545	3.0	9.5/12.7	S	70 165	560 3694	111
30	TYP- 5X5	UNI FORM	545	3.0	9.5/12.7	F1	69 165	573 3693	100
31	TYP-5X5	UNI FORM	545	3.0	9.5/12.7	Swirl	70 167	579 3722	97
33	TYP-5X5	UNIFORM	534	3.0	9.5/12.7	F1	70 166	597 3863	102
37	TYP-5X5	UNIFORM	545	3.0	9.5/12.7	Swirl	69 167	578 3673	99
38	TYP-5X5	UNIFORM	545	3.0	9.5/12.7	Swirl	70 166	609 3836	95
39	TYP-5X5	UNIFORM	545	3.0	9.5/12.7	F1	69 166	602 3848	104
40	THM 5X5	UNIFORM	545	3.0	9.5/12.7	Swirl	100 166	551 3477	11
41	1HM 5X5	UNIFORM	545	3.0	9.5/12.7	Swirl	100 166	544 3505	79
43	TYP-5X5	UNIFORM	545	3.0	9.5/12.7	Swirl	159 165	1240 3829	31
46	TYP-5X5	UNIFORM	545	3.0	9.5/12.7	Swirl	160 165	1237 3793	29
47	THM 5X5	UNIFORM	545	3.0	9.5/12.7	Swirl	140 165	1152 3497	49
48	THM 5X5	UNIFORM	545	3.0	9.5/12.7	Swirl	139 165	1138 3505	49
515	THM21	UNIFORM	381	1.83	10.7/14.3	unknown	69 157	6/5 398/	54
516	THM 21	UNIFORM	381	1.83	10.7/14.3	unknown	69 158	661 3975	56
3	THM 5X5	UNIFORM	534	3.0	10.8/14.3	None	70 160	471 3460	90
7	TYP- 5X5	UNI FORM	534	3.0	10.8/14.3	None	70 160	512 3191	42
11	TYP-5X5	UNIFORM	545	3.0	9.5/12.7	None	71 171	511 3361	81
14	THM 5X5	UNIFORM	534	3.0	10.8/14.3	None	70 160	470 3451	65
16	THM 5X5	UNIFORM	534	3.0	10.8/14.3	None	70 160	501 3431	65
19	TYP-5X5	UNIFORM	545	3.0	9.5/12.7	None	70 167	487 3594	83
21	TYP-5X5	UNIFORM	545	3.0	9.5/12.7	None	70 165	494 3558	88
22	TYP-6X6	UNIFORM	545	3.0	9.5/12.7	None	69 162	513 3376	78
512	TYP-21	UNIFORM	254	1.83	10.7/14.3	unknown	69 158	547 4029	57
513	THM21	UNIFORM	254	1.83	10.7/14.3	unknown	69 160	545 3910	54
514	THM 21	UNIFORM	254	1.37	10.7/14.3	unknown	69 158	1041 3934	38
517	TYP-21	Non- uni	254	1.83	10.7/14.3	unknown	103 158	5 786 3727	39

WCAP

2

(T S 156 164) [9] (T S 512 517)

,

[8]

EPRI

,

.

가

.

.

(TDC)

TDC=0.05

2.2 MATRA CHF MATRA , 2 . MATRA 3 . 7 ; 7

CHF

I.

		Uniforr			
		High velocity	Low velocity	Non-uniform APS	
		$(G > 1356 \text{ kg/m}^2/\text{s})$	$(G 1356 \text{ kg/m}^2/\text{ s})$		
	MV grids	А	В	Л	
	No MV grids	(2	D	
			가	. , A-	
		$(q^{\prime\prime}_{CHF,BASE})$, B-		
(F_G)	, C-			(F_{SG}) ,	

.

$(F_{NU}) \qquad 7! \qquad .$

SR - 1

$$q''_{CHF} = q''_{CHF,BASE} \cdot \frac{F_G \cdot F_{SG}}{F_{NU}}$$
(1)

.

3.1 SR-1 가 SR - 1 1356 kg/m²/s 1255 (A -KRB - 1) 가 CHF • CHF CHF CHF , CHF가 가 , 가 가 가 CHF가 CHF가 $q^{\prime\prime}_{CHF,BASE} = A_1 - A_2 \cdot G \cdot \chi + a_{11} \cdot G.$ (2) $A_{1} = a_{10} + a_{1}L + a_{2}\left(\frac{P}{1000}\right) + a_{3}D_{he} + a_{4}D_{hy} + a_{5} \tanh \left[a_{12}(d_{g} + g_{sp}) + a_{13}\right],$ $A_{2} = a_{6} \left(\frac{P}{1000} \right) + a_{7}L \left(\frac{P}{1000} \right) + a_{8}L + a_{9} \left(\frac{P}{1000} \right)^{2}.$ 3 가 (P,G,) 5 가 $(L, D_{he}, D_{hy}, d_g, g_{sp})$ 8 FIT Z [11] 가 가 KRB-1 , SR - 1 [12] 가 가 1255 P/M1.001 0.100 가 (residual) 0 [13]. CHF CHF CHF t-test . \overline{x} 가 (null hypothesis) S μ=0 $\frac{\overline{x} - 0}{s/\sqrt{n}}$ *t* = 가 t t / 2,n - 1 SR - 1 t 2.513 가 1% • 가 0 D'-test[14]. D'-test 가 가 D ' D' , D ' 가 (random .

variable) $S^2 T$.

T

4. SR-1 CHF

, Katto

[2]

L-regime H-regime

.

$$\left(\frac{G_{limin}^2 L}{\sigma \rho_f}\right)^{0.29} < \frac{0.4 \left(\rho_g / \rho_f\right)^{0.133}}{D/L + 0.0031}$$
(5)

0

CHF

0

,

Katto

5-

$$q^{\prime\prime}{}_{M} = q^{\prime\prime}{}_{CHF,BASE} \cdot \left(\frac{G}{G_{ref}}\right)^{A}.$$
(6)

$$1 = \left(\frac{P}{M}\right)_{BASE} \cdot \left(\frac{G}{G_{ref}}\right)^{A}, \tag{7}$$

$$\ln \frac{P}{M} = -A \ln \frac{G}{G_{ref}}$$
(8)

5- (a) А 가 0.43 5-(b) $P/\,M$ 가 boiling number (B_{\circ}) А $B_{\,\circ}$

 $B_{o} = q'' \times 10^{3} / (G h_{fg})$

$$F_{G} = \left(\frac{G}{G_{ref}}\right)^{a - b \cdot B_{o}}$$
(9)
(b)
$$B_{o} = 1 \qquad P/M \qquad 7 \downarrow 1.0 \qquad 7 \downarrow \quad ,$$

a-b=0.43 5-(c) 0.38 가 b .

SR - 1

6

•

가

가 1.0

가

I.

가 CHF

Tong F-factor [17]

$$F_{NU} = \frac{C}{q''_{local} \cdot (1 - e^{-C \cdot Z_{CHF}})} \int_{Z_{ONB}}^{Z_{CHF}} q''(z) e^{-C \cdot (Z_{CHF} - z)} dz, \qquad (11)$$

$$C = 0.15 \frac{(1 - \chi_{CHF})^{4.31}}{G^{0.478}} inch^{-1}.$$

7 8

,

5%

,

140

7 Tong F-factor 7 5

SMART CHF

7

•

,

3.5 SR-1 CHF

,

•

SM	ART	MATRA					
SR - 1		2	,	2518			
	Pressure(bar)		68 to 171.				
	Mass flux (kg	(m^{2}/s) :	470 to 4973,				
	Critical qualit	y:	-0.21 to 0.70,				
	Heat flux (kW	(m^2) :	513 to 4380,				
	Heated length	(m):	1.37 to 4.27,				
	Hydraulic dia	meter(mm):	9.5 to 13.6,				
	Heated equiva	lent diameter(mm):	11.8 to 15.7,				
	Grid spacing(m):	0.25 to 0.55.				
			9	. SR-1			
		KRB-1		. SR-1			
	P/M	10 .					
3.6	D N B F	t.					
		가	P/M	3			
	G-	$1500 \text{ kg/m}^2/\text{ s}$		-			

.

I.

G-

가

2. SR-1 CHF

w

$$q''_{CHF} = \min \left\{ q''_{CHF,BASE} \times \frac{F_G \cdot F_{SG}}{F_{NU}}, q''_{evap} \right\}$$
where,

$$q''_{CHF,BASE} = a_1L + a_2(P/1000) + a_3 D_{he} + a_4 D_{hy} + a_5 \tanh \left[a_{12}(d_g + g_{sp}) + a_{13}\right] \right]$$

$$- \left[a_6 (P/1000) + a_7L (P/1000) + a_8L + a_9(P/1000)^2\right] \cdot G \cdot \chi + a_{10} + a_{11} G$$

$$F_G = \left(\frac{G}{G_{ref}}\right)^{(0.81 - 0.38 \cdot B_{s})}, \text{ for } G < G_{ref}$$

$$= 1.0 , \text{ for } G \ge G_{ref}$$

$$F_{SG} = 1.0 \text{ for mixing vaned spacer grid,} = 0.9 \text{ for non-mixing vaned spacer grid,} = 1.0 \text{ for uniform axial power shape,} = \frac{C}{q''_{local} \cdot (1 - e^{-C \cdot Z_{CHF}})} \int_{Z_{avas}}^{Z_{cHF}} q''(z) e^{-C \cdot (Z_{CHF} - z)} dz$$

$$where, C = 0.15 \frac{(1 - \chi_{CHF})^{4.31}}{G^{0.478}} \text{ in } ch^{-1}$$

$$q''_{evap} = \left(\frac{d_{he}}{4L}\right)G h_{fg} \left(1 + \frac{\Delta h_{sub}}{h_{fg}}\right)$$

$$q''_{evap} = \left(\frac{d_{he}}{4L}\right)G h_{fg} \left(1 + \frac{\Delta h_{sub}}{h_{fg}}\right)$$

$$q''_{evap} = fix (MBtu/hr/ft^2) , q_{sp} = grid spacing (inch)$$

$$G = mass flux (MBtu/hr/ft^2) , q_{sp} = grid spacing (inch)$$

$$L = heated length (ft) , q_{sp} = grid spacing (inch)$$

$$Bo = boiling number; q'' \times 10^3/(G \cdot h_{fg})$$

DNBR DNB

P/M

.

DNBR one-sided tolerance limit

$$DNBR_{cor} = \overline{\left(\frac{P}{M}\right)} + k_{95/95} \cdot s \tag{12}$$

, DNBR cor Owen DNBR, $k_{95/95}$ 95% 95% one-sided tolerance limit factor [15] , s = P/M• 3 G- H-가 . DNBR 1.281 1.203 , G- H- P/M D'-test 5% 11 . P/M DNBR non-parametric tolerance limit [16] 가 . G-Н-DNBR 1.331 1.228 가 , G-. P/M DNBR Н-DNBR M vs. P 12 DNBR , DNBR DNBR 95% CHF가 5% 가 12 , DNBR CHF가 DNBR CHF가 tolerance limit DNB 5% . G-Н-DNBR

P/M MV & 1255 1.001 0.0999 А (SR-1 MV & В 382 1.053 0.1519 No-MV & Uniform APS С 741 1.000 0.1073 Non-uniform APS D 140 1.015 0.1160 가 APS Е MV 1738 1.014 0.1158 F No-MV 0.997 0.1083 780 G 706 1.0400.1380 $(G < 1500 \text{ kg/m}^2/\text{ s})$ Η 2518 1.009 0.1138

9.

3. SR-1

P/M

DNBR

10. SR-1 CHF

11. SR-1

12. SR-1

DNBR

4.

4000

Measured CHF (kW/sq-m)

0

0

I.

(1)	SMART		CHF				
	2518	CHF		,		MATR	А
		CHF data base					
(2)			SR - 1	CHF		•	
			,				
	Tong F-fact	or					
(3)		SR-1		DNBR	1.228	가	, G<1500
	$kg/m^2/s$		DNBR	1.331	가		

- [1] Macbeth, R.V., The burnout phenomenon in forced-convection boiling, Advances in Chemical Engineering 7, 207-293, 1968.
- [2] Katto, Y., A generalized correlation of critical heat flux for the forced convection boiling in vertical uniformly heated round tubes, Int. J. Heat Mass Transfer 21, 1527-1542, 1978.
- [3] Bowditch, F.H. & D.J. Mogford, An experimental and analytical study of fluid flow and critical heat flux in PWR fuel elements, AEEW-R2050 (1987).
- [4] Hwang, D.H., et. al., Evaluation of thermal margin in a KOFA-loaded core by a multichannel analysis methodology, J. KNS 27, 518-531 (1995).
- [5] Groeneveld, D.C., et. al., 1986 AECL-UO critical heat flux lookup table, Heat Transfer Engineering 7, 46-62 (1986).
- [6] Yoo, Y.J., et al., Development of a subchannel analysis code MATRA applicable to PWRs and ALWRs, J. KNS 31, 314-327 (1999).
- [7] , , Vol. 1, KAERI/TR-233/91 (1991).
- [8] Motley, F.E., et al., Critical heat flux testing of 17x17 fuel assembly geometry with 22-inch grid spacing, WCAP-8536 (1975).
- [9] Fighetti, C.F. & D.G. Reddy, Parametric study of CHF data Vol. 3, EPRI NP-2609 (1982).
- [10] , , , , , , KAERI/RR-980/90 (1990).
- [11] Van de Berg, H.R., FITZ(NLINZ) Non-linear least square curve fitting code IBM PC version, FPE-85-021 (1985).
- [12] , SMART CHF : I. SR-1 CHF , SMART-CA-CA 120- 07 Rev.0, (2000).
- [13] Draper, N.R. & H. Smith, Applied Regression Analysis, 2nd ed., Chapter 3., John Wiley & Sons Inc. (1981).
- [14] ANS, Assessment of the Assumption of Normality (Employing individual observed values), ANSI N15.15 (1974).
- [15] Owen D.B., Factors for One-Sided Tolerance Limits and for Variables Sampling Plans, SCR-607 (1963).
- [16] Somerville P.N., Tables for Obtaining Non-Parametric Tolerance Limits, Annals of Mathematical Statistics 29, pp.599 (1958).
- [17] Tong, L.S., Boiling crisis and critical heat flux, TID-25887 (1972).