'2000

Comparison of Yield Stress related to Compacted Method of the Spent Fuel Assembly Skeleton

, 가

가

가

SUMMARY

To increase the utilization of uranium resources contained in the spent fuel, the spent fuel is reused. For this, the spent fuel is disassembled or spent fuel rod is extracted from the spent fuel assembly. After the rod is extracted, the remaining components of spent fuel assembly, so called a NFBC(Non-Fuel Bearing Components), should be compacted for the final disposal. To develop the compacting device, the compacted device should be considered in terms of fabrication cost of devices, maintainability, required power. Skeleton is composed of the top and bottom nozzle, grid, guide tube, compacted elements etc. Especially, the grid and guide tube is important factor for the skeleton compaction. In this study the characteristic of these three methods was investigated in the front face method, in the side face method, in the mixed face method for the grid compaction. Also It was considered in the bulking and compacting stress for the required power of the guide tube. The theoretical values are compared with the experimental values. Finally, the side face method is selected by the comparison.

1.

(1) P_1

.

I

 $P_1 = \frac{E \times I \times n_1 \times \pi^2 \times C_1 \times C_2}{L_1^2}$

$$P_2 = \frac{E \times I \times n_2 \times \pi^2 \times C_1}{L_1^2}$$
(3)

 $C_1, \quad C_2$

, *E* , *I*

(2)

$$7$$
 $17x 17$
 $1layer(17)$
 7
 P_b
 Fig. 2
 .

$$P_i = \frac{\sigma(b - d)t}{2} \tag{4}$$

$$P_b = P_i \times N \tag{5}$$

,

 P_i hole 1 , P_b hole 17 N hole .

.

 P_{c}

•

(4), (5)
$$P_i 7^{\dagger} 38 KN, P_b 7^{\dagger} 684 KN$$
 70 .

Fig. 3

$$P_c$$
 .
 $\sigma_m = \alpha_k \times \sigma_a$ (6)

.

$$\sigma_a = \frac{P_a}{(b - a \times n) \times t}$$
(7)

$$\sigma_m = \frac{\alpha_k P_a}{(b - a \times n) \times t}, \qquad \alpha_k = 2.8$$
(8)

$$P_a = \frac{\sigma_m \times (b - d \times n) \times t}{\alpha_k} \tag{9}$$

$$\therefore P_c = P_a \times h \tag{10}$$

6468 $kgf/cm^{2}[4]$, σ_{a} ${\cal O}_m$, ,

$$\alpha_k , P_a, P_b .$$
(10)
(9)
150 KN 570 KN 58

150 KN 570 KN 58

$$\begin{array}{c} (\) \quad (\) \\ P_c \\ P_n \end{array} \end{array} \begin{array}{c} P_b \\ P_f, \\ P_f, \end{array}$$

$$P_{o} = (P_{b}^{2} \times P_{c}^{2})^{\frac{1}{2}}$$
(11)

$$P_{w} = (P_{f}^{2} \times P_{n}^{2})^{\frac{1}{2}}$$
(12)

$$P_{o}$$
, P_{w} .
(11), (12) P_{o} 91, P_{w} 182.

116

, 2.2.2

I.

가. 2 cm 1 layer

Fig. 4

.

가 *P* 7 ト 1

.

 P_{1}, P_{2} 7 Fig. 4 . 1

$$P = P_1 \cos \theta + P_2 \cos \theta$$
(13)
$$P_1 = P_2 \qquad \theta = 30^{\circ} \qquad (13)$$

가

$$P = 2 \times P_1 \cos \theta = P_1 \times \sqrt{3}$$
 (14)

Fig. 5

182 ,

•

140

•

2902 KN

$$\sigma = \frac{P_1}{ab}, \quad a = D - d \tag{15}$$

$$\sigma = \frac{P_1}{(D - d)b} \tag{16}$$

$$P_1 = \sigma(D - d)b = 675 \ kgf$$
 (17)

$$P = P_1 \times \sqrt{3} = 1169 \ kgf \tag{18}$$

$$\sigma$$
 SUS316 2812 kgf/cm² , D, d, b, a

,

2 cm 23987 . 2 cm 1

$$P_g$$
 .
 $P_g = f \times N = 2291 KN$ (19)

•

$$P_{g} \qquad P_{o} \quad \text{Fig. 7}$$

$$(20) \qquad .$$

$$\sigma = \frac{P_{0}}{(a \times b) - (A_{1} \times 289 - 25)}$$

$$(20)$$

$$, \frac{\pi d^{2}}{4} \qquad (20) \qquad P_{0} \qquad 2902 \ KN$$

(20)

 P_0

$$A_{1}$$

Table 1

296 .

3.

- 1. S.W. Park "Development of Spent Fuel Management Technology Research and Test Facility", KAERI/RR-1802/97(1997).
- 2. R. Jung "Remote Handling and Disassembly of Light Water Reactor Fuel Elements in the Gorleben Pilot Conditioning Plant" IAEA-TECDOC-842 p27-45(1994)
- 3. S.W. Park "Spent Fuel Reconstitution Consolidation and Disassembly"

Fig. 2

Fig. 3

I.

s 200 74(20x10)

Fig. 7 가

		(ton)		(ton)	
		145		234	
		1 layer	70		
		17x 17 hole	296	-	
		58			
		91			

8