TRANSX/DANTSYS

LWR MOX

Application of TRANSX/DANTSYS to LWR MOX Benchmark Calculations

Abstract

The benchmark calculations with TRANSX/DANTSYS code system was perfomed against PNL30~35 critical experiments to verify the code system's applicability to LWR MOX core. The MATXS library of 69 neutron groups for light-water-reactor problem was generated using NJOY code through processing the recent release of ENDF/B-VI nuclear data. Relative power distributions except outermost lattice fuel rods showed reasonable results, and the calculated k_{eff} of all cases showed good consistency with benchmark-model values or MCNP results. Moreover, calculated results indicate that there is an increase in k_{eff} with increasing lattice pitch, and showed the tendency that k_{eff} value for the borated case was higher than that for the unborated case with the same pitch.

1.

가

(Evaluated Nuclear Data File) Los Alamos

가 ENDF-6 format (Monte Carlo) MCNP . 가 Reference (Discrete Ordinates) DANTSYS 가 가 . ANISN 2 DOT-IV 1 Oak Ridge 가 3 DOOR S . DOORS 3.1 TORT가 , 1 ANISN 2 DORT, 3 가 . , ANISN DORT . 1, 2 3 , DANTSYS Los Alamos , NJOY . MATXS-format TRANSX DANTSYS , 1 ONEDANT 2 3 TRANSX/DANTSYS . LWR (MOX) 가 ENDF/B-VI MATXS-format TRANSX/DANTSYS LWR

.

MOX

L

2.

MATXS-format			가				ENDF/B-VI Release 5 ^[1]			
, NJOY	[2]	97.95	94.105			가		. NJOY		
RECONR, BROADF	R, HEATR,	UNRESR,	THERMR,	GROUPR,	MAT	X SR				
					, N	JOY		97		
MATXSR					가		,			
MATXSR		94.105								
Source										
		7	ŀ	L	WR					
,	WIMS-D						69			
. ENDF/B-VI	가					Poi	intwise	Tolerance	0.2%	

3. TRANSX/DANTSYS

^[3] MATXS-format TRANSX (Diffusion) , 가 가 , Adjoint , MATXS /가 ASCII 2.15 CARD, FIDO, ANISN Binary **ISOTXS** , (Material-Ordered) GOXS(Group-Ordered) . , GOXS-format Group-Ordered GIP Material-Ordered .

TRANSXBondarenko,Dancoff7.7

3.2 DANTSYS

DANTSYS^[4] Boltzmann . Input , Solver , Edit , 1, 2, 3 ONEDANT, TWODANT, THREEDANT Solver , 2 Mesh Mesh TWODANT/GQ, TWOHEX Solver Solver Iteration . 가 Diffusion Synthetic Acceleration Scheme . CCCC (Committee on Computer Code Coordination) ISOTXS ANISN, FIDO-format Quadrature Set , . ,

.

4.

Pacific Northwest Laboratory Plutonium Recycle Critical Facility (PRCF) 1975~6 [5] MOX 6가 , PNL30~35 International Criticality Safety Benchmark Evaluation Project ICSBEP Handbook^[6] (ICSBEP) . Natural $UO_2-2wt.\%PuO_2(8\%^{240}Pu)$ MOX , 1.77800cm, 2.20914cm, 2.51447cm Pitch . 1.2827cm MOX 0.0762cm Zircaloy-2 Gap 1.435 lcm . 92.964cm 0.5cm MOX 가 UO_2 (Pure Water) . PNL30~35 1 . ,

•

	TRANSX	NJOY					MA	ΓXS
		LWR	1		,		Equiva	lent Cell
								Cell
ONEDAN	NT	MO	X					. ONEDANT
				TRA	NSX	,		Cell
						가		
TWO	DANT					TF	RANSX	
	, N	IOX	Equival	ent Cell				
	ISOTX S-form	nat						
ISOTXS		TWOI	DANT		,			(keff)
TRAN	SX			Bell-I	Jansen-San	dmeier		
Dancoff	S/1 S/	aurer		Den I	Tunisen Sun	umerer		, 69
Duncon			Legendr	• •	P₃		Ona	drature
S ₈	TWODA	NT	Degenar		Pitch		Quu. 9	16
Mesh					1 non		30cm	10
Inner	, Outer Iteration		10-5				Joein	TWODANT
Edit	Mesh			가	7	. TWODAI	NT	
	Buck	ling Height		·				
5.2								
2	TRANSX/TWODA	NT						ICSBEP
Handbool	k	MCNP				. ,		
				(Benchmar	k Model)			
		Pitchフト	가	k_{eff}	가	,		Pitch
				$k_{\tt eff}$				
	MCNP				,	Н	Iatice	Akkurt ^[7]

ESADA

TWODANT

5.

5.1

NJOY

.

PNL30~35 MOX

I.

TRANSX ONEDANT

.

TRANSX TWODANT

.

- Cross Section Evaluation Working Group, "ENDF-102 Data Formats and Procedures for the Evaluated Nuclear Data File ENDF-6," BNL-NCS-44945 (1990)
- [2] R. E. MacFarlane and D. W. Muir, "The NJOY Nuclear Data Processing System Version 91," LA-12740-M (1994)
- [3] R. E. MacFarlane, "TRANSX 2 : A Code for Interfacing MATXS Cross-Section Libraries to Nuclear Transport Codes," LA-12312-MS (1993)
- [4] Ray. E. Alcouffe et al., "DANTSYS : A Diffusion Accelerated Neutral Particle Transport Code System," LA-12969-M (1995)
- [5] R. I. Smith and G. J. Konzek, "Clean Critical Experiment Benchmarks for Plutonium Recycle in LWR's," EPRI-NP-196, Volume I (1976)
- [6] Hyung-Kook Joo, "Rectangular Arrays of Water-Moderated UO₂-2Wt.%PuO₂(8%²⁴⁰Pu) Fuel

Rods," MIX-COMP-THERM-002, ICSBEP Handbook (1997)

,

L

- [7] Hatice Akkurt and Naeem M. Abdurrahman, "Benchmark Calculations of the ESADA Single-Region Mixed-Oxide Critical Experiments," *Nucl. Technol.*, **127**, 301 (1999)
- [8] , , "PNL30-35 HELIOS ," '99

(1999)

Experiment Number	Pitch (cm)	Number of Fuel Rods	Boron Concentration (ppm)	Axial Buckling Height (cm)	Temperature
PNL30	1.77800	469	1.7	104.19432	20.98
PNL31	1.77800	761	687.9	102.57117	2 1.90
PNL32	2.20914	195	0.9	102.89525	22.75
PNL33	2.20914	761	1090.4	101.99654	22.66
PNL34	2.51447	161	1.6	100.14014	22.15
PNL35	2.51447	689	767.2	102.03419	23.40

2. PNL

Case	PNL30	PNL31	PNL32	PNL33	PNL34	PNL35
Experiment	1.000 18	1.00006	1.00019	1.00022	1.00096	1.000 13
Benchmark-Model*	1.0024	1.0009	1.0042	1.0024	1.0038	1.0029
TWODANT	0.98981	0.99321	0.99988	1.006 10	1.00489	1.007 13
MCNP*	0.9990	0.9996	1.0031	1.007 1	1.0061	1.0077
(ENDF/B-V)	± 0.0008	± 0.0009	± 0.0009	± 0.0008	± 0.0008	±0.0008

* Data from ICSBEP Handbook (Ref. 6)

 $k_{\tt eff}$

1. PNL30

T

2. PNL31

3. PNL32

4. PNL33

5. PNL34

T

6. PNL35