CANDU Zr-2.5Nb

(DHCV)

Determination of Delayed Hydride Cracking Velocity of CANDU Zr-2.5Nb Pressure Tubes

, , , ,

Round-Robin AECL DHC . 250 7 test $10.1 \times 10^{-8} \text{m/sec}$ DHC $\pm 0.7 \times 10^{-8}$ m/sec data 가 가 DHC 30ppm . CCT (curved compact toughness) 144 250 DHC DHC DHC , stereoscope . 가 가 가 striation . DHC , DHC 49 kJ/mol 182 68 kJ/mol 가 가 가 가 가 striation 가 가 가 가

Abstract

Untill now, the results of DHC(Delayed Hydride Cracking) testing on Zr-2.5Nb pressure tubes have shown a wide range of scattering due to different testing methodes. This study has reported the DHC characteristics of Zr-2.5Nb pressure tubes obtained by using the qualified DHC test procedure set-up through the IAEA round robin test on DHC with curved compact toughness specimens. The DHC velocity was measured at temperature ranging from 144 to 250 , and an activation energy for DHC of Zr-2.5Nb alloys was determined. After

'2000

DHC testing, fracture surface were investigated with a stereoscope to measure the striation spacing. The DHC velocity and striation spacing increased with temperature. DHC activation energy of total temperature range was determined to be 49 kJ/mol, but above 182 was 68 kJ/mol.

1.

2.

,

가 Laboratory (CRL) . 29ppm 60ppm 가 가 17mm CCT DHC 1.7mm a₀/Wフト 0.5 , . 0.5 tapered . tapered bending stress out-put wire 0.5mm Zr-2.5Nb wire spot welding potential drop DHC 50 1 , 1 2 /min , undercooling 1 가 . 30 가 . \mathbf{K}_{1} 15MPa m ^{1/2}가 가 controller 1 DCPD . 6mA DCPD . 2 DCPD 가 . a/Wフト 0.7 DCPD . DHC 가 1.5 2mm 가 . . DHC DHC 100 가 (Micro-Vickers Hardness, Model No. HMV-2000) 9-poiint DHC K1 (ASTM E 1737) . **K**1 . DHCV . DHCV = DHC / (DHC - DHC)

3.

3-1. DHC

250 7 Zr - 2.5Nb DHC 8.8×10^{-8} 10.8×10^{-8} . DHC 가 3 $10.1 \, \mathrm{x}$. 10⁻⁸ DHC 8.8×10^{-8} DHC 가 가 2mm 3.98mm , **K** 1 40.3 MPa $m^{1/2}$ 가 DHC DHC . , 9.8×10^{-8} 10.8×10^{-8} 가 가

DHC	10.3×10^{-8}	. Round Robin test					
			DHC			가	
		DHC .					
				30pj	əm		
,			DHC				4
	DH	С			3		
DHC		. DHC		가 가			,
4	DHC	1/ T				4	182
			, 182	2 7	ŀ	DHC	
scattering	, incu	bation time				182	
	DI	HC					
			, Root ⁷⁾		180		
		가	, 가 DHC				
		. Zr - 2.5Nb	DHC	180		가	
	,		,	-	가		
		가					
		3	Zr - 2.5Nb		DHC		48.83
kJ/mol		Sagat ⁸⁾					
10k J/ m ol			182				68.41
kJ/mol Ambler ⁹⁾ 7			. DHC				
8,10,11)				(D _H)		(C _H)	
(35 kJ/mol)		70kJ/mol				
DHC	,		가			가	
, 42 72	$kJ/mol^{6,9,12}$	가					
					, 182		DHC
1/ T	가						
3-2. striat	ion						
DHC	striation				_		
		DHC	. 5	250	DHC		

striation

. CCT DHC

DHC sharp 가 , DHC striation 가 6 striation striation spacing 가 13) striation 가 가 14) 가 \mathbf{K}_1 \mathbf{K}_{1}^{2} PZ = 0.032ΡZ \mathbf{K}_1 가 , **K**1 y s 가 가 가 , • 가 가 가 가 가 가 가 가 striation . , 4. 1. Zr-2.5Nb DHC 182 가 180 . . 가 2. Zr-2.5Nb DHC , DHC $49 \ kJ/mol$ 182 data . 가 68 kJ/mol 가 가 가 가 3. , striation .

가

가 가

1) B. Cox, AECL Report, AECL-8702 (1982)

가

2) M.P.Puls, AECL Report, AECL-6302 (1975)

- 3) L. A. Simpson and K. Nuttall, ASTM STP 633 (1977) 608
- 4) Young Suk Kim et al, KAERI Report : KAERI/RR-1766/96, KAERI (1997) 365
- 5) P.A. Ross-Ros, J. T. Dunn, A. B. Mitchell, G. R. Towgood and T. A. Hunter : AECL Report, AECL-5261 (1976)
- 6) C. G. Coleman, J. F. R. Ambler, ASTM STP 633 (1977) 589
- 7) J. H. Root and R. W. L. Fong, J. of Nuclear Materials 232 (1996) 75
- 8) S. Sagat, C. E. Coleman, M. Griffiths and B. J. S. Wilkins, ASTM STP 1245 (1994) 35
- 9) J. F. R. Ambler, ASTM STP 824 (1984) 653
- 10) M. P. Puls, Metall. Trans. A, 21A (1990) 2905
- 11) R. Dutton, K. Nuttal, M. P. Puls and L. A. Simpson, Metall. Trans. A, 8A (1977) 1553
- 12) K. F. Amouzouvi and L. J. Clegg, Metall. Trans. A, 18A (1987) 1687
- 13) Je Youg Oh, In Sup Kim and Young Suk Kim, J. Kor. Inst. Met. & Mater., 37 (1999) 680
- 14) J. R. Rice and M. A. Johnson, Inelastic Behavior of Solids, M.F. Kanninen et al(Ed.), New York (1970) 641

Time (t)

Fig. 1. Schematic diagram of Temperature-Time and loading schedule

Fig. 2. A linear relationship between crack length and dc potential drop

Fig. 3. DHC velocity of various specimens at 250 test temperature.

Fig. 4. DHC velocity vs. temperature(1000/T) for Zr-2.5Nb alloy.

Fig. 5. Typical striation pattern on the fractured surface of Zr-2.5Nb tube after DHC testing

Fig. 6. Variations of striation spacing with temperature.