Zr - 2.5Nb

Microstructure and Creep Strength of Zr-2.5Nb Alloys

Zr - 2	2.5Nb				, 350	-400 , 120MPa
		. Zr - 2.5Nb	qua	druple vacuum	arc meltin	g 4 가
			. P2	primary - 2	Zr	'- Zr
	, '- Zr	Nb				
	P3 P4					
Nb		Nb	가		. P1	
Zr	- Zr					

Abstract

In order to investigate the effect of manufacturing processes on the creep behavior in the Zr-2.5Nb alloys, creep test was carried out at 350-400 and 120MPa. The Zr-2.5Nb alloys were made by quadruple vacuum arc melting and made into sheets with 4 different manufacturing processes. Process P2, yielding the microstructure of primary -Zr grains and transformed '-Zr, results in the higher strength and the low creep strain due to the higher amount of Nb contents dissloved in the '-Zr grains. On the other hand, P3 and P4 processes lead to higher creep rate since the precipitation of a coarse -Nb decreased Nb contents in the -Zr grains. Process P1, yielding the microstructure of the elongated -Zr grains and a fraction of -Zr, was found to be the most optimized process for Zr-2.5Nb sheets with high strength and good creep resistance.

1.

가 Cold worked Zr-2.5Nb , 1 , 가 delayed hydride cracking(DHC) CANDU (irradiation creep) (irradiation growth) [1] 가 [2]. 25mm CANDU 가 , 30 4 mm.

,	가

2.

25	0g	quardruple	e vacuum	n arc metl	ing				
		1050	0.5		, 4 가				
	[5]. P1	CAND	U					850	70%
	30%		. P2	Р	1		가	592	
		2		850	(+)				. P3
	가	mo	notectoid	(Zr-Nb,	620±10)	570			
592			2		. P4	700			680 -
592		가	3			4 가			
		45	0	24					
	1								

	Simens	Х-	Jeol 2000-FX-II
. X-	30-50		
#1500	10%	90%	

I.

20V, -40

replica . 70% 20% , 10% 200 .

EDX .

0.25 mm/min. cross head300,1ASTM E8-9325mm 7t.Applied Test System, 120MPa400±1LVDT (Linear Variable Differential).

3.

2 4 가 . P1 Zr-2.5Nb 2 (a) - Zr , - Zr - Zr - Zr CANDU . - Zr 3 <a> subcell , <c> . - Zr carbon replica EDX 2 48.9at.%Nb - Zr • . - Zr , 800 CANDU - Zr 20% N b [6, 7]. P 1 2 Nb , 5 가 X-ray 2 =35.79 (110) - Zr . 가 P2 (+) 2 (b) , 가 '- Zr primary - Zr , P1 primary - Zr - Nb . 4 (f) '- Zr , 2 Zr-61.8at.%Nb . P2 . 가 - Zr -Nb P 1 Nb , 5 . 2 (c) - Zr 가 P3 가 가 monotectoid (620) P4 . 2 (d) , 가 가 Fe . 2 P2 - Zr P3 -Nb P 1 -Nb

EDX , Zr-81.8at.%Nb , 5 , X-ray •

	_								
6	5 4	가				300			
	P 1	P2	300				, P3	P4	
			2			P3 P	4		
					P 1	P2			
					P2		+		
	Zr		가 P1						
7	4 7	የት			35	- 400			
. P1		가		, P3	P4	가			
2	2	Zr - 2	2.5Nb	4 가			- Zr	- Nł)
,				Nb			•	, Nb	
				가	, Nb		P1-P2-P4-P3	;	
. Perov	ic [8]	CANDU	Zr-2.5Nb		- Nb	Nb	46.7%		
Nb		0.6%Nb				Nb			
P3-P4-P2	2-P1	가					P2		
Nb	P 1		,	P2			'- Zr		

4.		
4 가	Zr - 2.5Nb	
1) P1		

.

Nb	가	,	Nb	P3 P4
2) P3	P4		- Nb	. P1-P2-P4-P3
-	Nb	가 .		

.

Nb 가 .

T

[1] S. Sagat, C. E. Coleman, M.Griffiths and B. J. S. Wilkins, "The effect of fluence and irradiation temperature on delayed hydride cracking in Zr-2.5Nb", ASTM STP 1245 (1994) pp.35-61.

[2] N. Christodoulou, A. R. Causey, R. A. Holt, C. N. Tome, N. Badie, R. J. Klassen, R. Sauve and C. H. Woo, "Modeling in-reactor deformation of Zr-2.5Nb pressure tube in CANDU power reactors", ASTM STP 1295 (1996) pp.518-537.

[3] J. D. Parker, V. Perovic, M. Leger and R. G. Fleck, Zirconium in the Nuclear Industry, 7th Internation Symposium, STP 939, ASTM, Philadelphia, 1985, pp. 86-100.

[4] D. Srivastava, G. K. Dey and S. Banerjee, "Evolution of microstructure during fabrication of Zr-2.5Nb alloy pressure tubes", Metall. and Mater. Trans., 26A (1995) pp. 2707-2718.

[5] Y. S. Kim, "Characteristics of Nb containing Zr alloys with a variable of manufacturing process", Transactions of the 15th International Conference on Structural Mechanics in Reactor Technology (SmiRT-15), Seoul, Korea, August.15-20, 1999.

[6] O. N. Derek, M-B Xianying and D. W. Brian, "Microstructure of Zr-2.5Nb alloy pressure tubing", Zirconium in the Nuclear Industry, 9th Internation Symposium, STP 1132, ASTM, Philadelphia, 1991, pp.156-176.

[7] Y. S. Kim, "The characterization of Zr-2.5Nb pressure tube", KAERI/TR-1137/98.

[8] V. Perovic, A. Perovic, G. C. Weatherly, L. M. Brown, G. R. Purdy, R. G. Fleck and R. A. Holt, "M icrostructure and microchemical studies of Zr-2.5Nb pressure tube alloy", J. Nucl. Mater., 205 (1993) pp.251-257.

Element	Zr	Nb	0
Zr - 2.5Nb	bal.	2.5-2.6	1240- 1490

Table 1. Analyzed chemical composition of Zr-2.5Nb alloys

Fig. 1. Dimension of tensile and creep test specimen.

1

Fig. 2. TEM microstructures of Zr-2.5Nb alloys made by 4 different manufacturing processes.

Fig. 3. TEM microstructures of Zr-2.5Nb alloys made by P1 process; (a) $\langle a \rangle$ type dislocation, (b) $\langle c \rangle$ type dislocation, (c) subcell structure.

Table 2. Texture coefficient and microchemical composition of -phase measured by replica method in as-received Zr-2.5Nb alloys.

Processes	Precipitate size	Compositio	n (Nbat.%)	Kearns Number			
	(µm)	Replica	D.P	f_N	\mathbf{f}_{R}	fт	
P 1	0.01 0.04	48.9	44.8*	0.33	0.24	0.42	
P2	< 0.02	61.8	64.5 [*]	0.49	0.16	0.35	
P3	0.05 0.1	81.8	- 1	0.63	0.07	0.30	
P4	0.04 0.1	80.8	-	0.66	0.08	0.26	

* In order to determine the Nb composition of -Zr, the lattice constant of -Zr calculated from diffraction pattern taken from Fig. 4 (b) and (e). Then -Nb content was determined from the following equation, a =3.5872-0.00285 x [at.%Nb].

T

Fig. 4. TEM microstructures of Zr-2.5Nb alloys made by (a)-(c) P1 process and (d)-(f) P2 process.

Fig. 5. XRD patterns of as-received Zr-2.5Nb alloys in the rolling normal plane.

Fig. 6. Tensile properties of Zr-2.5Nb sheets with manufacturing processes at 300 .

I.

Fig. 7. Temperature dependence of creep of Zr-2.5Nb alloys in the load of 120MPa.

< >

: : 2000. 3. 31 : 7¹() 7¹ ()not new ()out of scope () not clear ()inadequate format

							1	: 5.2
		, ,	,	,			2	: 5.3
	(:	10)						
		Zr	-2.5Nb					
				(305-3	53)		
						150		
					(042)	EAV		(042)
					868-2061	ГАЛ		868-8346
-	•					•		

: : 2000. 3. 31 : 7¹() 7¹ ()not new ()out of scope () not clear ()inadequate format

						1	: 5.2
	, ,	,	,			2	: 5.3
(:	10)						
	Zr	-2.5Nb					
			(305-3	53)		
					150		
				(042)	EAV		(042)
				868-2061	ГАЛ		868-8346

: : 2000. 3. 31

						1	: 5.2
	, ,	,	,			2	: 5.3
(: 10)						
	Zr - 2	.5Nb					
			(305-3	53)		
					150		
				(042)	EAV		(042)
				868-2061	ГАА		868-8346