Evolution of dislocations and decomposition of **b**-Zr with neutron irradiation in the Zr-2.5Nb pressure tube irradiated in Wolsong Unit 1

ABSTRACT

TEM examination was successfully conducted for the first time in KAERI on thin foils taken from the inlet, the middle and the outlet of the M-11 tube irradiated with the fluence of up to 8.9×10^{25} nm⁻² and temperatures of 264-305.6 °C in the Wolsong Unit-1 for 10 years. Irradiation yielded an increase in a-component dislocation density to 7.5×10^{14} m⁻², which was the highest at the inlet of the tube exposed to 275 °C. Besides, small dislocation loops with the maximum diameter of 5 to 10 nm were observed in the α -Zr grains. In contrast, the c-component dislocation density did not change with irradiation as opposed to that of the as-fabricated tube, keeping an initial dislocation density of 0.7- 0.8×10^{14} m⁻². Irradiation facilitated the decomposition of β -Zr phase, leading to the enrichment of Nb concentration in the β -Zr phase, which was the highest at the outlet but was suppressed at the middle of the tube with the highest neutron fluence.

1

2000

1

b-Zr

Evolution of dislocations and decomposition of **b**-Zr with neutron irradiation in the Zr-2.5Nb pressure tube irradiated in Wolsong Unit 1

ABSTRACT

TEM examination was successfully conducted for the first time in KAERI on thin foils taken from the inlet, the middle and the outlet of the M-11 tube irradiated with the fluence of up to 8.9×10^{25} nm⁻² and temperatures of 264-305.6 °C in the Wolsong Unit-1 for 10 years. Irradiation yielded an increase in a-component dislocation density to 7.5×10^{14} m⁻², which was the highest at the inlet of the tube exposed to 275 °C. Besides, small dislocation loops with the maximum diameter of 5 to 10 nm were observed in the α -Zr grains. In contrast, the c-component dislocation density did not change with irradiation as opposed to that of the as-fabricated tube, keeping an initial dislocation density of 0.7- 0.8×10^{14} m⁻². Irradiation facilitated the decomposition of β -Zr phase, leading to the enrichment of Nb concentration in the β -Zr phase, which was the highest at the outlet but was suppressed at the middle of the tube with the highest neutron fluence.

 기
 Zr-2.5Nb

 cracking (DHC)
 기

delayed hydride

가 Zr-2.5Nb . 가 가 , Zr-2.5Nb c-. [1-3], , $1x10^{25}$ nm⁻² a-[4]. Zr-2.5Nb $8.9 x 10^{25} mm^{-2}$ 1 M-11 TEM 2. 가 1 10 Zr-2.5Nb (W1M11) Inlet, Middle 170 oultlet TEM mm ring $275.4 - 302.1 \ ^{o}C \qquad 6.84 x 10^{25} - 8.91 x 10^{25} \ nm^{-2}$ Table 1 off-cut (1970 W1M11 lot (200817Q) .) TEM , (c-_) 0.1 mm TEM . Zr-2.5Nb 3 mm, . Tenupol-3 twin jet . polisher 10% perchorolic acid + 90% ethanol 20 V 가 jet polishing . TEM Jeol-2000FX (200KeV) , SADF (Selected Area Diffraction Pattern) , , Nb [5].

3.

3.1.

	Zr-	-2.5Nb		가				
				W1M11	lot			
off-cut		1	Zr-2.5Nb					
α-Zr			10:1					
.α-Zr	a-	c-	4.0x	$10^{14}, 0.97 \times 10^{14} \text{ m}^{-2}$,	X-ray		

[6]. β-Zr Nb , SADF d(110) [7] Nb , 38 at.% Nb .

3.2. W1M11

, , [8]. **7** Middle Ring TEM 0, 3 , 6 , 9

TEM Inlet, Middle Outlet Ring 0 2 Inlet, Middle Outlet a- 가 . 가 line intercept method $(7.5 \times 10^{14} \text{ m}^{-2})$, 가 가 Inlet 가 (3), . , a- loop 3 Outlet $(5.2 \times 1014 \text{m}^{-2})$ 10 nm, Outlet 15 nm Inlet

aloop , 가 Inlet line broadening $1.6 \times 10^{25} \text{ nm}^{-2}$ Griffiths TEM X-ray Zr-(250 °C) 8x10¹⁴ m⁻², 300 °C Outlet 2.5Nb , Inlet 6x10¹⁴m⁻² TEM 8.9x10²⁵ nm⁻² . a-Griffiths [6, 9] , Zr-2.5Nb . 1-2x10²⁵ nm⁻² 가

4 W1M11 c- . c- prism 0002 , . c-, 0.97x10¹⁴ m⁻² 0.8x10¹⁴ m⁻² c- . c- 8.9x10²⁵ nm⁻² , . プ

Nb20% Nb38 %Nb. β -Zr, 7^{1} Outlet 7^{1} 55 at. %Nb 7¹ β -Zr, inlet β -ZrNb48 at.%. 7^{1} Middle β -ZrNb41 at. %InletOutlet

						β-Zr			가				
	,	Griffiths 가				[9].							
4.													
	264 - 305.6 °C	С						8.9x10 ²⁵ nm ⁻²			1		
	W1M11							TEM	가				
α-Zr	a-		2		가		,		5-10	nm			a-
	loop			, a-				가	Inlet		7.5x1	$0^{14} m^{-2}$	가
	가	Outlet		5.2x10	$^{14}m^{-2}$	가			a	-		7	ነት
	,							Inlet		가			
		C-						•		가		, 4x10	$)^{14} \mathrm{m}^{-2}$
			β-Zr					β-Zr	Nb	가	가		,
가	Outlet	Nb		55 at.	%Nb								β-
Zr	Nb 7	' ŀ		가		Μ	iddle	;					

5.

- [1] M. Griffiths, R. A. Holt, A. Rogerson, J. Nucl. Mater. 225 (1995)245.
- [2] R.A. Holt, A.R. Causey, M. Griffiths, E.T.C. Ho and C.H. Woo, Proceedings of the Eleventh International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1295 (1996) p. 623.

1

- [3] R.A. Holt, A.R. Causey, and C.H. Woo, J. Nucl. Mater. 159 (1988) p.225.
- [4] P.H.Davies, R.R.Hobbons, M.Griffiths and C.K.Chow, Proceedings of the Tenth International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1245 (1994) p.135.
- [5] Y. S. Kim et al, Analysis of the Microstructure of the Zr-2.5%Nb Pressure Tube Irradiaated in Wolsong Unit 1 using TEM Method, KAERI Report, KAERI/TR-1490/2000, 2000.
- [6] V.F.Urbanic and Griffiths, Proceedings of the Twelfth International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1354 (2000) p. 641.
- [7] G.B.Grad, J.J.Pieres, A. F. Guillermet, G.J.Cuello, R.E.Mayer and J.R.Granada, Zeitschrift fur Metallkunde, 86 (1995) p.395.
- [8] Y. S. Kim et al., Korea Institute of Nuclear Safety, KINS Report, KINS/AR-560, 2 (1999) p. 113.
- [9] M. Griffiths, J.F. Mecke, and J.E.Winegar, Proceedings of the Eleventh International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1295 (1996) p.580.

Fig. 1. Microstructures of the unirradiated Zr-2.5Nb tube made of the same lot as that of W1M11 tube: (a) grain structures, (b) <a> component dislocations and (c) <c> component dislocations.

Fig. 2. Evolution of $\langle a \rangle$ type dislocations with irradiation in the W1M11 pressure tube: (a) before irradiation and (b-d) after irradiation – (b) the inlet, (c) the middle and (d) the outlet.

Fig. 3. <a> type dislocation loops on the inlet ring of the W1M11 tube irradiated to 8.9×10^{25} nm⁻².

Fig. 4. Typical $\langle c \rangle$ component dislocations in the W1M11 tube irradiated to 8.9×10^{25} nm⁻² along with those of the preirradiated tube: (a) preirradiated tube, (b) the inlet, (c) the middle and (d) the outlet of the W1M11 tube.