`2000

KSTAR ECE

Feasibility Study of ECE Measurements on KSTAR

150 KSTAR ECE . KSTAR 7 . X- 2 ECE . 2GHz SSB 8ch-filter bank

Abstract

Before designing of a heterodyne radiometer for electron temperature measurements on KSTAR by means of electron cyclotron emission, here is presented a study for the feasibility of ECE diagnostics for KSTAR plasma. For this, it is also presented a study of the density range where measurements are possible, of the optical thickness and of the harmonic overlap. The heterodyne radiometer system has been designed to measure the electron temperature profile with a spectral resolution 2GHz, which has a type of single side band, 8ch filter bank.

1.

ECE(electron cyclotron emission)

(magnetic fusion plasma)

,

(T_e) (T_e-profile)

					(fluc	tuation)			
(plasma	transport)			(MHD	fluctua	ation)			
.[1,2]	,			,					
ECE				•	,	NSTX			
	가						(cut-off	range)	
ECE			5	የት	.[3]	,		가	
		(optical thickness	ss)가					ECE	
ECE		가	,				KSTAR		
								E	CE
	(cut-off r	ange),	(cut-off	density)	,	,		(harmonic	overlap)
	2n	d X-	ECE					,	
single-si	de band filt	er bank [2]							
2.	(c	ut-off range)							

(tokamak) ECE R- (right-O- (ordinary wave) Xhand circular polarized wave) (extraordinary wave)7∤ 0-X- 가 . (cut-off range) 가 ECE ECE 가 ECE .

ECE *n* (cut-off and resonance frequency)

(cut-off and resonance frequency) . O-(dispersion relation)

 $n^{2} \equiv \frac{c^{2}k^{2}}{w^{2}} = 1 - \frac{w_{pe}^{2}}{w^{2}}$ (1)

 $\boldsymbol{W}_{o,cut} = \boldsymbol{W}_{pe}$ (wave number) $k 7 \downarrow 0$ 0 Oп (cut-off) (. , .) . 가 Х-Х-L- (left hand circular polarized wave) R-(3) .

Х-

$$\frac{c^2 k^2}{\mathbf{w}^2} = 1 - \frac{\mathbf{w}_{pe}^2}{\mathbf{w}^2} \frac{(\mathbf{w}^2 - \mathbf{w}_{pe}^2)}{(\mathbf{w}^2 - \mathbf{w}_h^2)}$$
(2)

, X-

.

.

$$\boldsymbol{w}_{x,cut} = \boldsymbol{w}_{R} \equiv 0.5(\boldsymbol{w}_{ce} + \sqrt{\boldsymbol{w}_{ce}^{2} + 4\boldsymbol{w}_{pe}^{2}})$$

$$\boldsymbol{w}_{x,cut} = \boldsymbol{w}_{L} \equiv 0.5(-\boldsymbol{w}_{ce} + \sqrt{\boldsymbol{w}_{ce}^{2} + 4\boldsymbol{w}_{pe}^{2}})$$
(3)

$$\boldsymbol{w}_{x,res}^2 = \boldsymbol{w}_{UH}^2 \equiv \boldsymbol{w}_{pe}^2 + \boldsymbol{w}_{ce}^2$$
(4)
O-
$$\boldsymbol{W} < \boldsymbol{W}_{pe} , X- \qquad \boldsymbol{W} < \boldsymbol{W}_L \quad \boldsymbol{W}_{UH} < \boldsymbol{W} < \boldsymbol{W}_R$$

	KS	TAR						가
ECE			EC	Έ		가		
	1	KSTAR	(0	peration	modes)		ECE	

.

1. KSTAR ECE

•

operation phase	Fi plas	rst sma	O plas	H sma	ł	oaselin	e			upg	rade		
operation mode No.	1.0	1.1	2.0	2.1	3.0	3.1	3.2	4.0	4.1	4.2	4.3	4.4	4.5
ECH (MW)	0.5	0	0.5	0	0.5	0.5	0.5	05.	0.5	0.5	0.5	0.5	0.5
B _T (T)	1.5	1.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
R(m)	1.6	1.6	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8
a(m)	0.3	0.3	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
$T_e(0)(keV)$	2.8	0.6	5.6	5.6	7.5	8.1	8.5	9.8	8.4	6.6	4.9	10.2	7.4
$\frac{N_e(0)}{(10^{20}/m^3)}$	0.2	0.15	0.5	0.5	0.8	1.0	1.0	1.25	0.8	0.8	0.9	1.7	1.3

1

.

(operation phase)

4 가

•

.

1 1

1.0 4.0 **W**_{ce}

(parabolic profile) 7 · . 1 ECE O-

			2, 3
(2 nd , 3 rd harmonics)	X- , O-	ECE	가
• • •	X-	(low field side)	
ECE	가 O-		가
4.0, 4.4, 4.5		ECE	

3. (cut-off density)

가 (1) 1 • 1 KSTAR KSTAR ECE . 가 (cut-off . KSTAR density) 가 ECE

 O ECE
 가

 . O ECE
 가
 (5)

$$n_o = \frac{B_o^2}{4pm_e c^2} = 9.7 \times 10^4 B_o^2 [G] cm^{-3}$$
(5)

Х-

2

 $\boldsymbol{w}_{R}=2\boldsymbol{w}_{ce}$,

$$\frac{\boldsymbol{w}_{ce} + \sqrt{\boldsymbol{w}_{ce}^2 + 4\boldsymbol{w}_{pe}^2}}{2} = 2\boldsymbol{w}_{ce}$$
(6)

, Greenwald tokamak density limit 7 Gaussian (7) .[4]

$$n_{Lim} = 2.5 \times 10^{12} \frac{B_o}{R_o q_{cvl}}$$
(7)

 q_{cyl} (cylindrical safety factor).Greenwald limit7.Greenwald limitECE.2(toroidal)1.5T3.5TGreenwald

.

density limit

KSTAR		ECE 2 nd	X-	1.5T
4.4x10 ¹³ /cm ³	3.5T	$2.4 x 10^{14} / cm^3$.	2	3.5T
q_{cyl}	2	KSTAR		ECE

- 7 · . 1.5T() q_{cyl} 5.4 KSTAR 2 , KSTAR 2nd X- ECE
- 4. (optical thickness)
 - ECE ECE *t*, *g*

.[5]

$$I_{abs} = \frac{\boldsymbol{w}^2}{8\boldsymbol{p}^3 c^2} T_e \frac{1 - \exp(-\boldsymbol{t})}{1 - \boldsymbol{g} \exp(-\boldsymbol{t})}$$
(8)

•

t 가 1	ECE	(blackbody radiation)
	T_e	ECE
	5%	

	가 3	
1 st O-	2 nd X-	.[1]

 $\mathbf{r} = (\mathbf{w}_{pe} / \mathbf{w}_{c})^{2}$ $\mathbf{t}_{1}^{(o)} = \mathbf{p}^{2} \mathbf{r} (1 - \mathbf{r})^{1/2} \frac{T_{e}}{m_{e} c^{2}} \frac{R}{\mathbf{l}}$ (9) $\mathbf{t}_{2}^{(x)} = 2\mathbf{p}^{2} \mathbf{r} \frac{T_{e}}{m_{e} c^{2}} \frac{R}{\mathbf{l}} \left(1 + \frac{1}{2} \frac{\mathbf{r}}{3 - \mathbf{r}}\right)^{2} \left(1 - \frac{\mathbf{r}}{4} \frac{4 - \mathbf{r}}{3 - \mathbf{r}}\right)^{1/2}$ (10)

3	1			가 가	1.1	가
	4.4	1 st O-	2 nd X-			
3	1 st O-				1 st O-	

 3
 1^{st} O

 7
 . 2^{nd} X

 1.1
 $\tau > 3$

(edge) cm 3 가 .

5. (harmonic overlap) ECE

	1/R	(low	aspect	ratio),
(high harmonics)				

(11)

$$(n+1)\frac{R_o}{R_o+a} \le n\frac{R_o}{R_o-a} \tag{11}$$

 2^{nd} X-

83GHz .

.

. n

*R*_o 가 1.8m, a 7 + 0.5m 2 KSTAR 271.22 - 229.95GHz .

130 - 153.3cm .

KSTAR	2^{nd}	X-
2		
	70GHz	100GHz

1.5T

가 3 ECH(electron cyclotron heating)

(low field side) 74GHz 10cm

> 가 3.5T .

ECE (high field side) ECH .

•

2. 101/110		
	B _o =1.5T	B _o =3.5T
frequency range in plasma	70.7 to 103.4GHz (130 to 190cm)	153.4 to 271.4GHz (130 to 230cm)
frequency range $t > 3$	73.9 to 96.4GHz (139.5 to 181.5cm)	155.7 to 253.9GHz (139 to 226.5cm)
harmonics overlap range	_	271 to 230GHz (130 to 153.3cm)
frequency at plasma center	84GHz (160cm)	196GHz (180cm)
ECH frequency	84GHz (160)	168GHz(2 nd harmonics) (210cm)
available range for ECE diagnostics	74 to 83GHz (161.9 to 181.6cm) 85 to 96GHz (140 to 158GHz)	156 to 167GHz (2111.2 to 226.1cm) 169 to 230GHz (153.4 to 208.8GHz)

2. KSTAR

6.

KSTAR

				•			
single	side band- f	ilter bank					
	ECE			(waveguide)			
ECH			(
		가		[6]) 84GHz band rejection filter			single side
band			(83 0	GHz)	•	(mixer)	RF
2-18GHz		IF	I	ower divider	2GH	z	
	5cm						
4	KSTAR		ECE				
						8ch	82-68GHz
			가	5ch	83-74GHz		
	3.5T			KSTAR			
IF			(mixer)				

- 1. M. Bornatici et al., Nucl. Fusion 23, 1153(1983).
- 2. H. J. Hartfuss et al., Plasma Phys. Controlled Fusion **39**, 1693(1997).
- 3. P. C. Effhimion et al., Rev. Sci. Instr. 70, No.1, 1018(1999).
- 4. F. Frigione et al., ENEA rep. RT/ERG/FUS/93/06, 9(1993).
- 5. S. Zhang *et al.*, Proc. of 9th joint workshop on ECE and ECH, Borrego Springs, Jan., 23-26(1995).
- 6. Y. Nagayama et al., Rev. Sci. Instr. 70, No.1, 1021(1999).