

The Flowing Path Modeling and Performance Evaluation of a Tortuous Path Valve for Nuclear Power Plant

Abstract

In this study, the flowing path modes and the pformance of a tortuous path valve which can solve cavitation and related problems in fluid control valve subjected to high differential pressure were investigated. The pressure loss coefficient in the models of the tortuous path on a disk was also investigated. The loss coefficient has no variation according to the value of Reynolds Number in the region of high Reynolds Number. The characteristics of the flowing path models are computed based on the experimental results and they are highly dependent on the number of turns and passages of the maze of the disc stack. The results can be applied to the design of the tortuous path valve trim. The fluid kinetic energy of the valve trim outlet can be effectively controlled within the required limit by combining the number of turns and passages of the disc stack. The performance characteristic of the prototype tortuous path valve was evaluated and the result was well predicted by the one of the models. The other performances of the valve have been satisfied with the criteria and its reliability has been proved at the nuclear power plant.

'2000

가

I

	. ,	가 가
		1,
2	[2].	(Vapor Pressure)
•		
1	00,000psi	

, , , . . .

가 가

[3].

(Local Loss)

1.

(Plug)

•

(Disc Stack)

7 · . (K_L) [7][8]. K_L = $\frac{2}{\rho} \frac{P}{V_m^2}$, $V_m = \frac{q}{A}$ (1)

8 Turn 1 Passage

3.

I.

4.

5.

6 Turn 7 32 . (KL) 1.0 7 .

.

•

가 가 .

	·	Turn	Tur	'n
			가 기	ŀ
2.0		2	150	

76 mm . Turn Passage . 7 7TurnTurn7Passage(Cv).TurnPaassage

4가

< 1 > Turn	Passage	
	Turn	Passage
Model 1	20	36
Model 2	24	16
Model 3	24	32
Model 4	32	12

(K)

•

$$K = \frac{P}{\frac{1}{2}\rho V^2}$$
(2)

•

.

 (K_L)

[6].

$$P = (K_{L} N + K) \left(\frac{q^{2} G_{f}}{890 d^{4}}\right)$$
(3)

,

N, q,
$$G_f$$
, d , ,

(C_v)

,

1

$$[4][9].$$

$$C_{v} = q \sqrt{\frac{G_{f}}{P}}$$
(4)

(Kinetic Energy, KE)

[1].

$$\mathbf{V}_{0} = \frac{\mathbf{W}}{\rho_{0} \mathbf{A}_{0}} \tag{5}$$

$$KE = \frac{1}{2} \rho_0 V_0^2$$
 (6)

w A . 1 47} 7, 8, 9 10

 (C_v) (Stroke) 11 . Turn 20 가 가 Passage • 가 Passage 가 . Turn 가 Cv - % 가 Stroke(h/D)가 가 Turn Passage .

T

7. Model 1(20 Turn 36 Passage)

8. Model 2(24 Turn 16 Passage)

9. Model 3(24 Turn 32 Passage)

39

			10	. Model 4	(32 Turn 1	2 Passage)						
12				Turn	12				Ра	ssage	27	
		가										
				(h/D)	Passage	가			가			
가												
13				Passage	36						Т	urn
12	20								,			
						Passage	가			Turn	가	
	가				가				•		가	가
		가							가	가		
					가							
			2					(23 m/s)		

Cv - % Stroke

5. 가

42 kg/cm², 315 , 66,917 kg/hr, (Required Cv) 67.5 4 ANSI(B31.1, B16.34, B16.37, B16.104) ANSI/FCI(70-2), ASTM (A216, A420, B609, E94, E186, E446), ASME (Sec. ,) ISA EPRI 가 가 가 가 가 , 16 m/sec12 m/sec, 가 12 Turn, 36 passage 44 14

14. (12 Turn, 36 Passage)

15.

I

15

17

-	1	1		
1	Body	A216 WCB		
2	Seat Ring	316 S.S & W/Hardfacing		
3	Disk Stack	420J2 S.S		
4	Plug	316 S.S & W/Hardfacing		
5	Bonnet	420J2 S.S		
6	Bonnet Flange	420J2 S.S		
7	Bonnet Bolt/Nut	B7/2H		
8	Packing	Grafoil		
8 9	Packing Frame	Grafoil Carbon Steel		
8 9 10	Packing Frame Plug Stem	Grafoil Carbon Steel 316 S.S		
8 9 10 11	Packing Frame Plug Stem Piston Rod	Grafoil Carbon Steel 316 S.S 316 S.S		
8 9 10 11 12	Packing Frame Plug Stem Piston Rod Clamp	Grafoil Carbon Steel 316 S.S 316 S.S 316 S.S		
8 9 10 11 12 13	Packing Frame Plug Stem Piston Rod Clamp Bottom Cap	Grafoil Carbon Steel 316 S.S 316 S.S 316 S.S Carbon Steel		
8 9 10 11 12 13 14	Packing Frame Plug Stem Piston Rod Clamp Bottom Cap Cylinder	Grafoil Carbon Steel 316 S.S 316 S.S 316 S.S Carbon Steel Carbon Steel		
8 9 10 11 12 13 14 15	Packing Frame Plug Stem Piston Rod Clamp Bottom Cap Cylinder Piston	Grafoil Carbon Steel 316 S.S 316 S.S 316 S.S Carbon Steel Carbon Steel Carbon Steel		
8 9 10 11 12 13 14 15 16	Packing Frame Plug Stem Piston Rod Clamp Bottom Cap Cylinder Piston Cylinder Rod	Grafoil Carbon Steel 316 S.S 316 S.S Carbon Steel Carbon Steel Carbon Steel Carbon Steel		

2 (Positioner)

,

(Contact Check),

,

,

•

,

3 > <

	• : Body & Bonnet			
	• : ANSI B16.34, B16.37			
	• : $156 \text{ kg/cm}^2(2,220 \text{ psig})$			
	• : 52 (125), 1	()	
	• : Gland Packing			
	• : Seat			
	• : ANSI B16.104(Class)			
2	○ : , 4 kg/ cm ²	(0.05	I /min	
	• : 10 52	(0.03	L/ III III .)
	• : Cv 0.01% (0.19 L/min.)			
2	○ : 7 kg/ cm², : 10			
5	• : .	()
	• (Required Cv) 67.5 ± 5%			
1				
-	· 가	(18)
	±5% .			
	O 0% 100%			
	5% .			
	• .	Ò		
	ο .	0		
	° .		5	9
5	0	Ò	-	-
		0.2	0.6	
	0	Ò	19	
	, .	20		
	0			

(Cv) (%)

.

(ILV - 3608A) 1

< 3 >

,

L

80 dBs	50 dBs

- [1] G. Borden, 1998, "Control Valves", Instrument Society of America
- [2] Control Components Inc., 1996, "Product Literature," Control Components Inc.
- [3] J. P. Tullis, 1989, "Hydraulics of Pipelines Pumps, Valves, Cavitation, Transients," John Wiley & Sons.
- [4] R. D. Blevins, 1984, "Applied Fluid Dynamics Handbook," Van Nostrand Reinhold Company.
- [5] I. E. Idelchick, 1986, "Handbook of Hydraulic Resistance," Hemisphere Publishing Corporation
- [6] Instrument Society of America, 1997, "Control Valves ISA Standards, Recommended Practices, and Technical Report", Instrument Society of America
- [7] B. R. Munson, D. F. Young and T. H. Okiishi, 1994, "Fundamentals of Fluid Mechanics," John Wiley & Sons
- [8] R. Crowe, 1993, "Engineering Fluid Mechanics," Houghton Mifflin Company
- [9] F. M. White, 1994, "Fluid Mechanics," McGraw-Hill Inc.

6.