KALIMER - 가

Creep-Fatigue Damage Evaluation of KALIMER Reactor Internal Structures for Elevated Temperature

,

150

Abstract

In this paper, the design limits of the stress, the accumulated inelastic strain, and a creep-fatigue damage are evaluated using the ASME Code Case N-201-4 to check the structural integrity of the baffle annulus structures in KALIMER reactor internal structures, which are subjected the elevated temperatures during normal operations. For the loading conditions, the normal operating temperatures and the seismic OBE are considered. From the evaluations, the stress limits are satisfied with enough margins and the inelastic strain limits also satisfied when using the simplified inelastic method. For the creep-fatigue damage evaluations, the conservative parameters are used if possible. From the creep-fatigue damage evaluations, all parts of interest satisfy the design rules but the reactor vessel liner part at the elevation of hot pool free surface has large creep damage.

1.

KALIMER

(Baffle annulus structure)

(1)		KALIMER	
가		530°C	. KALIMER
	30		-

가

KALIMER

ASME Code Case N-201-4⁽³⁾

.

(2)

.

,

.

,

	가		가
가	(3)	KALIMER	
	ASME Code Case	e N-201-4	
-			

.

2.

 KALIMER
 Fig.1
 ,
 ,
 ,

 ,
 ,
 ,
 ,
 ,

 Fig.2
 Fig.3
 .
 Fig.4

(Collector cylinder)

COMMIX

,

Fig.5 Fig.6 7가 . [4] 가

Fig.7

.

기 Hot standby(230°C)

Fig. 1 Conceptually Designed KALIMER RI

Fig. 2 Elevations and Flow Path in RI

Fig. 3 Axisymmetric Analysis Model of RI

Fig.4 Heat Transfer Mechanism in Baffle Annulus

가 (Heat-up)

가

가

Fig. 5 Temperature Distributions(Normal Operation)

Fig. 6 Stresses and Section Points

Fig.7 Assumed Normal Operation Cycles in Analysis

Fig. 8 Assumed Stress Cycles in Analysis

Table 1

가

-

4.2 가

가

•

$\Delta \boldsymbol{e}_{equiv,i} = \frac{\sqrt{2}}{2(1+\boldsymbol{n}^*)} [(\Delta \boldsymbol{e}_{xi} - \Delta \boldsymbol{e}_{yi})^2 + (\Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{xi})^2 + (\Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi})^2 + (\Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi})^2 + (\Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi})^2 + (\Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi})^2 + (\Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi})^2 + (\Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi})^2 + (\Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi})^2 + (\Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi})^2 + (\Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi})^2 + (\Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi})^2 + (\Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi} - \Delta \boldsymbol{e}_{zi$	+ $(\Delta \boldsymbol{e}_{yi} - \Delta \boldsymbol{e}_{zi})^2$ + + $\frac{3}{2} (\Delta \boldsymbol{g}_{xyi}^2 + \Delta \boldsymbol{g}_{yzi}^2 + \Delta \boldsymbol{g}$	$(\sum_{zxi}^{2})]^{1/2}$	(2)
i			
[3]	. (2)		
$n^* = 0.3$		n * = 0.5 フト	
(2)		가	$\Delta \boldsymbol{e}_{\max}$

.

가 가 가

.

Table.1 Maxim	um Value of C	alculated Equiv	alent Strain R	anges (Normal Op	peration)

Node N	lo.	De _x x 10 ⁻³	De _y x 10 ⁻³	De _z x 10 ⁻³	De _{xy} x 10 ⁻³	De _{max} x 10 ⁻³
Lower	458	0.31560	-0.20368	-0.49835	0.01212	0.549
SB/SP	976	-0.19167	0.31404	0.08838	-0.01130	0.482
Upper	481	0.12041	0.28790	-0.56018	0.06714	0.600
SB/SP	993	0.18707	-0.04557	-0.31861	0.09103	0.343
SB/SP 993 SB/RP 797		0.02405	-0.02362	-0.03078	0.00262	0.040
SB/BP	1239	-0.16359	0.03039	0.00649	-0.00262	0.031
SP/SB 17	1332	-0.03540	-0.07418	0.09963	-0.00972	0.122
	1344	-0.10761	0.10150	-0.16458	0.00562	0.187
RP/SR	2111	-0.01996	0.01185	-0.00630	0.00004	0.021
DI75D	2474	0.01565	0.00429	-0.02586	-0.00009	0.033
SP/RVI	2502	0.00433	-0.03960	0.07688	0.03308	0.081
SI/KVL	2506	-0.19588	-0.01128	0.23790	-0.06514	0.293
RVI /SP	2510	0.15016	-0.54620	0.26138	-0.04516	0.584
KVL/51	2748	-0.29405	0.35206	0.30291	-0.03253	0.480
RVL-Cold	2509	0.01470	-0.02677	-0.02107	0.00204	0.030
Free	2747	-0.03591	0.00421	0.10249	0.00255	0.095
RVL at BP	2729	0.17070	-0.16533	-0.24155	0.00486	0.292
Elev.	3077	-0.07976	0.26313	-0.08313	0.00686	0.265
RVL-Hot	3136	0.45305	-0.36914	-0.84765	-0.02960	0.877
Free	3086	-0.10031	0.73233	-0.47859	-0.03944	0.826

(2)

가

7 Δe_{mod}

.

 $\Delta \boldsymbol{e}_{\rm mod} = \left(\frac{S^*}{\overline{S}}\right) K^2 \Delta \boldsymbol{e}_{\rm max}$ (3)

$$\Delta \boldsymbol{e}_{\text{mod}} = \frac{K^2 S^* \Delta \boldsymbol{e}_{\text{max}}}{\Delta \boldsymbol{s}_{\text{max}}}$$
(4)

$$\Delta \boldsymbol{e}_{\mathrm{mod}} = K_e \, K \Delta \boldsymbol{e}_{\mathrm{max}} \tag{5}$$

가

 S^{*}

 \overline{S}

$$K = \frac{(P+Q+F)_{eff}}{(P+Q)_{eff}} \tag{6}$$

 $\boldsymbol{e}_{t} = K_{\boldsymbol{n}} \Delta \boldsymbol{e}_{\text{mod}} + K \Delta \boldsymbol{e}_{c} \tag{7}$

(7)

$$K_n = 1.0 + f \left(K'_n - 1.0 \right) \tag{8}$$

(Triaxiality Factor, T.F.) ASME Code

•

Case N-201-4

f

FIG. Y-1430-2

T.F.=
$$\frac{|\boldsymbol{s}_{1}+\boldsymbol{s}_{2}+\boldsymbol{s}_{3}|}{\frac{1}{\sqrt{2}} [(\boldsymbol{s}_{1}-\boldsymbol{s}_{2})^{2}+(\boldsymbol{s}_{2}-\boldsymbol{s}_{3})^{2}+(\boldsymbol{s}_{3}-\boldsymbol{s}_{1})^{2}]^{1/2}}$$
(9)

Table.2 Calculated Parameters for Modified Equivalent Strain Range(Normal Operation)

Node No.	$\Delta \boldsymbol{e}_{\max}$ x 10 ⁻³	S_{rH}	S^*	\overline{S}	K	Ke
458	0.549	151.7	242.5	243.4	1.010	1.0
976	0.482	151.7	231.5	232.2	1.010	1.0
481	0.600	124.1	220.6	223.8	1.033	1.0
993	0.343	124.1	179.2	181.1	1.033	1.0
797	0.040	20.7	28.4	29.8	1.185	1.0
1239	0.031	20.7	26.7	27.7	1.185	1.0
1332	0.122	151.7	171.8	172.6	1.040	1.0
1344	0.187	151.7	182.6	183.8	1.040	1.0
2111	0.021	20.7	23.0	23.0	1.000	1.0
2474	0.033	20.7	24.3	24.3	1.000	1.0
2502	0.081	151.7	165.1	168.3	1.243	1.0
2506	0.293	151.7	200.2	211.9	1.243	1.0
2510	0.584	151.7	248.3	249.8	1.016	1.0
2748	0.480	151.7	231.1	232.3	1.016	1.0
2509	0.030	124.1	128.9	129.0	1.023	1.0
2747	0.095	124.1	139.3	139.7	1.023	1.0
2729	0.292	20.7	77.0	78.3	1.022	1.0
3077	0.265	20.7	71.8	73.0	1.022	1.0
3136	0.877	20.7	144.8	148.3	1.031	1.0
3086	0.826	20.7	143.4	146.2	1.031	1.0

Node No.	T.F.	f	$K_e K \Delta \boldsymbol{e}_{\max} E / 3\overline{S}_m$	K'n	K _n	$\Delta \boldsymbol{e}_{\mathrm{mod}} \mathrm{x10^{-3}}$	$\Delta \boldsymbol{e}_c \mathrm{x10^{-3}}$
458	0.54	0.15	0.278	1.0	1.0	0.558	0.000
976	0.48	0.13	0.244	1.0	1.0	0.490	0.000
481	0.20	0.08	0.334	1.0	1.0	0.631	0.400
993	0.40	0.11	0.191	1.0	1.0	0.362	0.400
797	0.59	0.17	0.037	1.0	1.0	0.054	0.003
1239	0.51	0.14	0.029	1.0	1.0	0.042	0.003
1332	0.06	0.01	0.062	1.0	1.0	0.131	0.000
1344	0.70	0.20	0.096	1.0	1.0	0.201	0.000
2111	0.52	0.14	0.018	1.0	1.0	0.021	0.017
2474	0.16	0.07	0.028	1.0	1.0	0.033	0.017
2502	0.39	0.11	0.048	1.0	1.0	0.123	0.000
2506	0.08	0.01	0.174	1.0	1.0	0.428	0.000
2510	0.18	0.08	0.293	1.0	1.0	0.599	0.000
2748	0.58	0.17	0.241	1.0	1.0	0.493	0.000
2509	0.85	0.23	0.017	1.0	1.0	0.031	0.003
2747	0.57	0.16	0.051	1.0	1.0	0.099	0.003
2729	0.62	0.18	0.251	1.0	1.0	0.300	0.010
3077	0.29	0.09	0.228	1.0	1.0	0.272	0.010
3136	0.67	0.19	0.761	1.0	1.0	0.910	0.800
3086	0.14	0.05	0.717	1.0	1.0	0.861	0.800

 Table. 3 Calculated Parameters for Total Strain Range (Normal Operation)

Table 4. Calculated Fatigue Damages for Normal Operation

Node No.		Thern	nal Load (30) Cycles)	Seismic OBE	Fatigue Damage
		$\frac{K_{n}\Delta \boldsymbol{e}_{\mathrm{mod}}}{\mathrm{x10^{-3}}}$	$\frac{K\Delta \boldsymbol{e}_{c}}{\mathrm{x10^{-3}}}$	Total Stain Range $\boldsymbol{e}_t \ \text{x}10^{-3}$	(50 Cycles) $e_t x 10^{-3}$	$= \sum_{j=1}^{P} \left(\frac{n}{N_d} \right)_j$
Lower	458	0.558	0.000	0.556	0.119	0.000
SB/SP	976	0.490	0.000	0.489	0.120	0.000
Upper	481	0.631	0.413	1.030	0.238	0.000
SB/SP	993	0.362	0.413	0.765	0.233	0.000
SD/DD	797	0.054	0.004	0.051	0.025	0.000
SD/DP	1239	0.042	0.004	0.041	0.025	0.000
SD/SD	1332	0.131	0.000	0.127	0.169	0.000
5F/5D	1344	0.201	0.000	0.194	0.161	0.000
DD/CD	2111	0.021	0.017	0.038	0.160	0.000
DF/SD	2474	0.033	0.017	0.050	0.150	0.000
SD/DVI	2502	0.123	0.000	0.115	0.046	0.000
SF/KVL	2506	0.428	0.000	0.401	0.074	0.000
DVI /CD	2510	0.599	0.000	0.594	0.282	0.000
KVL/SI	2748	0.493	0.000	0.489	0.230	0.000
RVL-Cold	2509	0.031	0.003	0.034	0.003	0.000
Free	2747	0.099	0.003	0.102	0.003	0.000
RVL at BP	2729	0.300	0.010	0.310	0.002	0.000
Elevation	3077	0.272	0.010	0.282	0.002	0.000
RVL-Hot	3136	0.910	0.824	1.734	0.000	0.002
Free	3086	0.861	0.825	1.686	0.000	0.002

					. Fig.12
3136					가
	가		가		ASME Code
Case N-201-4	가	-		-	
S_i				$(\Delta t)_k$	

8760 hours

Table. 5 Calculated Parameters	for (Creep	Damages	(Normal	Operation)
---------------------------------------	-------	-------	---------	---------	--------------------

.

		t _u ,	$T_{\mu\nu}$. .	Rel	axed stress	level at	time <i>t</i>	~
Node No	os.	hrs	°C	t_j , hrs	S_{j}	\overline{S}_r	G	S_r	S_{LB}
Upper	481	262800	430	8760	127.6	125.8	1.00	126.1	160.25
SB/SP	993	262800	430	8760	123.1	121.6	1.00	121.9	160.25
CD/DD	797	262800	530	8760	9.9	9.8	1.00	9.8	8.88
SD/DF	1239	262800	530	8760	7.9	7.8	1.00	7.8	8.88
DD/CD	2111	262800	530	8760	7.3	7.2	1.00	7.2	39.13
DF/SD	2474	262800	530	8760	9.7	9.6	1.00	9.6	39.13
RVL-Cold	2509	262800	430	8760	5.5	5.4	0.95	5.4	8.88
Free	2747	262800	430	8760	16.4	16.0	1.00	16.1	8.88
RVL at BP	2729	262800	530	8760	59.9	53.5	1.00	54.8	30.25
Elevation	3077	262800	530	8760	54.4	49.8	1.00	50.7	30.25
RVL-Hot	3136	262800	530	8760	135.8	72.7	1.00	85.3	133.50
Free	3086	262800	530	8760	134.0	72.0	1.00	84.4	133.50

Fig. 12 Stress-Relaxation Limits for Creep Damages at Node 3136

0.876				•		가	Tabl	e 4
가							Fig.9	-
			-					
	71	71						
	∠ Γ	∠ Γ			가			·
			가		~ 1			
		가						

Table. 6 Calculated Creep Damage for Normal Operation

.

Node Nos.								Creep Damage
		$(T)_k, ^{\circ}C$	$(S)_k$, MPa	$(\Delta t)_k,$ hrs	(<i>S</i>) _{<i>k</i>} / <i>K</i> [′] , MPa	q	$(T_d)_k$, hrs	$= \sum_{k=1}^{q} \left(\frac{\Delta t}{T_d} \right)_k$
Upper	481	430	127.6	8760	141.8	30	1.0×10^{7}	0.026
SB/SP	993	430	123.1	8760	136.8	30	1.0×10^{7}	0.026
SB/BP	797	530	9.9	8760	11.0	30	1.0×10^{8}	0.003
	1239	530	7.9	8760	8.8	30	1.0×10^{8}	0.003
BP/SB	2111	530	7.3	8760	8.1	30	$1.0 \mathrm{x} 10^8$	0.003
	2474	530	9.7	8760	10.8	30	$1.0 \mathrm{x} 10^8$	0.003
RVL-Cold	2509	430	5.5	8760	6.1	30	Over 10 ⁸	0.000
Free	2747	430	16.4	8760	18.2	30	Over 10 ⁸	0.000
RVL at BP	2729	530	59.9	8760	66.6	30	3.0×10^{6}	0.088
Elevation	3077	530	54.4	8760	60.4	30	3.0×10^{6}	0.088
RVL-Hot	3136	530	133.5	8760	148.3	30	3.0×10^{5}	0.876
Free	3086	530	133.5	8760	148.3	30	3.0×10^{5}	0.876

5.

가	KALIMER	가 -	KALIMER ASME Code Case N-201-4 가 .	30 가
가 -	가	가		

가가

.

- Gyeong-Hoi, Koo, "Design Description of KALIMER Reactor Internal Structures," KALIMER/MS420-DD-01/1998, Rev.A, KAERI, 1999.
- [2] , , , "KALIMER
 - ,", , 1999.
- [3] Cases of ASME Boiler and Pressure Vessel Code N-201-4, ASME, 1994.
- [4] Gyeong-Hoi, Koo, "Evaluation of Structural Integrity of KALIMER Reactor Internal Structures for Elevated Temperature," KALIMER/MS420-AR-04/2000, Rev.A, KAERI, 2000.
- [5] ASME B&P Code Section III Subsection NG, ASME, 1992.
- [6] L.K. Severud, "Creep-Fatigue Assessment Methods Using Elastic Analysis Results and Adjustments," Transactions of the ASME, Vol.113, pp.34-40, 1991.

가