'2000

KALIMER

Buckling Analysis of Reduced Scale Model for Buckling Design of KALIMER Reactor Vessel

,

,

220

150

Abstract

The purpose of this paper is to evaluate buckling analysis of the reduced model of KALIMER Reactor Vessel. Actually it is very difficult to carry out the buckling test for actual size of directly KALIMER Reactor Vessel having 702 Cm of outer-diameter, 5 Cm of thickness, 1700 Cm of length. Therefore, the results of the Reduced model using the Finite Element Method are in well agreement with the results of KALIMER Reactor Vessel with FEM. We perform the buckling analysis for the reduced scale mode of reactor vessel using numerical analysis, which will be the basic data of buckling test in next stage.

,

1.

가

,	(; (buc (Seismic Loa ,	shell) skling) 가 ad) ,	가 .	가	가 ,	가
	, J.Okada		, 7	'ł 7	÷	
2.						
2.1	가					
	가	7f J.Okada	(Plasticity)			
가	(Imperfection)		(,), 7	ŀ		
	$Q = \alpha Min [Q_{cr,0}^b, Q_{cr,o}^s]$				(1)	
	α	$Q^b_{cr,o}$ $Q^s_{cr,o}$				
	$Q^{b}_{cr,o} = y_{b} \eta_{c} Q^{b}_{cr,e} \qquad ;$				(2)	
	$Q_{cr,o}^{s} = y_{s} \eta_{s} Q_{cr,e}^{s} ; $				(3)	
η_{c}	η_s				Уь	y _s

$$Q^b_{cr,e} = \frac{\pi R^2 t}{L} \sigma^c_{cr,e} \quad ; \tag{4}$$

$$Q_{cr,e}^{s} = \frac{1}{2} A \tau_{cr,e}^{s} ; \qquad (5)$$

$$\sigma_{cr,e}^{c} = \left[3\left(1 - v^{2}\right)\right]^{-1/2} E \frac{t}{R}$$
(6)

$$\tau_{cr,e}^{s} = 0.07708 \frac{\pi^{2} E}{(1-\nu^{2})^{5/8}} \left(\frac{R}{t}\right)^{-5/4} \left(\frac{L}{R}\right)^{-1/2}$$
(7)

.

304SS, 316SS Mod.9Cr-1Mo

Ramberg-Osgood - 가

,

I

$$\eta_c = Min[1, 1.04 \tanh(0.98 \sigma_{0.7E} / \sigma_{cr, e}^c)]$$
(8)

$$\eta_{s} = Min[1.14 \tanh(\tau_{0.7E} / \tau_{cr,e}^{s}), \tanh(1.6\tau_{0.7E} / \tau_{cr,e}^{s})]$$
(9)

$$y_{b} = 1 + 0.21 \sec h \left(3.5 \sigma_{0.7E} / \sigma_{cr,e}^{c} \right)$$
;
(10)

$$y_{s} = Min \left[1 + 0.22 \operatorname{sec} h \left(1.7 \tau_{0.7E} / \tau_{cr,e}^{s} \right), 1 + 13 \operatorname{sec} h \left(6.4 \tau_{0.7E} / \tau_{cr,e}^{s} \right) \right]$$
(11)

$$\sigma_{0.7E} = 1.815 E^{-1/9} \sigma_{0.2}^{10/9}$$
(12)

$$\tau_{0.7E} = \sigma_{0.7E} / \sqrt{3} \tag{13}$$

. J. Okada

가

.

•

$$\alpha = 0.66\lambda^2 - 0.9\lambda + 1.0 \tag{14}$$

$$\lambda = \frac{\sigma_{0.2}}{E} \frac{R}{t} \tag{15}$$

$$7$$
 $0.5 < L/R < 5.0$

 $50.0 \ < \ R/t \ < \ 500.0 \qquad .$

2.2

$$[Q_{cr}] = [R]^{a} [L]^{b} [t]^{c} [E]^{d} [\sigma_{0,2}]^{e}$$
(16)

$$[m]^{1} = [l]^{a} [l]^{b} [l]^{c} [\frac{m}{l^{2}}]^{d} [\frac{m}{l^{2}}]^{e} = [l]^{a+b+c-2(d+e)} [m]^{d+e}$$
(17)

$$a + b + c - 2(d + e) = 0$$
 $d + e = 1$ (18,19)

$$\therefore c = 2 - (a + b)$$
 $e = 1 - d$ (20,21)

(16)

$$[Q_{cr}] = [R]^{a} [L]^{b} [t]^{2 - (a+b)} [E]^{d} [\sigma_{0,2}]^{1 - d}$$
(22)

$$= \sigma_{0.2} t^{2} \left[\frac{R}{t} \right]^{a} \left[\frac{L}{t} \right]^{o} \left[\frac{E}{\sigma_{0.2}} \right]^{a}$$

$$\therefore \frac{Q_{cr}}{\sigma_{0.2} t^{2}} = f \left(\frac{R}{t}, \frac{L}{t}, \frac{E}{\sigma_{0.2}} \right)$$
(23)
$$R / t, L / t, E / \sigma_{0.2} , \qquad (23)$$

가

.

Fig.1 Plasticity and Imperfection Effects (RV)

. Table.1

I

L/R

Table.1 Dimension of Test models

: m m)

(

	(D)	(L)	(t)	(L/R)	(tons)	
Model-1	104	50	0.5	0.96	0.854	Shear
Model-2	104	80	0.5	1.54	0.6773	Mixed
Model-3	104	160	0.5	3.077	0.3386	Bending
Model-4	125	75	0.5	1.2	1.0114	Mixed

3.

(Eigenvalue

Buckling Analysis)

$([K] + \lambda [S]) \{ \Psi \} = 0$ (24) [K]: [S]: (Stress stiffness matrix) $\lambda :$ () $\{ \Psi \}$: ,

1/2

•

Fig.3 Test Model-3

Fig.4 Half-FE Method

Fig.5 Eigenvalue Buckling Mode of Test Models

3.1

.

.

I

,

Fig.7 Stress-Strain Curve of R.V

Fig.8 Stress-Strain Curve of Test models

	4	4 SHELL63,				SHELL43	
	KALIN	1ER					
510	(950° F)	가	ASME	Code	Section	III,NK	
E =	160 GP a					-	Fig.7
			E = 190	GPa		Fig.8	-
	. Table.2		가				

. Table.2

Table.2	Evaluation	Results	of	Buckling	Loads
---------	------------	---------	----	----------	-------

: ton] [가 Eigen value 20000 1200 31829 19252 2000 Ι 3.8299 0.8540 9.8153 8.3147 0.5684 Π 3.0278 0.6773 5.7513 4.2146 0.4181 III 2.1409 0.3386 2.7531 1.9206 0.3608 IV 3.2742 1.0114 6.9342 5.1142 0.7429

Model-3

$$Q_{cr,} / Q_{cr,} = 2.1409 / 1.92058$$

$$Q_{cr,} / Q_{cr,} = 0.3386 / 0.3608$$

$$P_{1} 0.5 5 P_{1} P_{1}$$

.

1

가

2.5

L/R

Fig.9 Disp-Force Response of RV

Fig.11 Buckling mode of KALIMER Reactor Vessel

4.

I.

Table.3	Geometry	of	Test	models
---------	----------	----	------	--------

(: mm)

	(D)	(L)	(t)	(kg)		(L/R)
Model-1	104	50	0.5	2.761	5.661E05	0.96
Model-2	104	80	0.5	2.761	5.661E05	1.54
Model-3	104	200	0.5	2.761	5.661E05	3.85
Model-4	125	75	0.5	3.792	6.46338E05	1.2

ANSYS 5.5

Table.4 Natural Frequency of Test models

[: Hz]

	1	2	3	4	5	6	7
Model-1	938.83	938.83	1508.5	2446.6	2683.6	2683.6	4860.0
Model-2	674.19	674.19	1189.5	1925.4	2273.0	2273.0	3174.4
Model-3	363.90	363.90	836.29	1351.2	1624.3	1624.3	1800.3
Model-4	699.12	699.12	1151.2	1864.0	2095.7	2095.7	3051.9

Fig.13 Mode shape of Model-2 (R = 104/2, L = 80, t = 0.5)

T

1. J.Okada, K.Iwta, et.al, (1995), "An Evaluation Method for Elastic-Plastic Buckling of Cylindrical Shells under Shear Forces", Nuclear Engineering and Design, Vol.157, pp.65-79.

•

.

,

•

- 2. R.Morel, R.Del Beccaro, (1984), "Design and Fabrication Studies for Large French LMFBR Components", PVP, Vol.89.
- 3. Kazuyuki Tsukimori, (1996), "Analysis of the effect of interation between shear and bending load on the buckling strength of cylindrical shells.", Nuclear Engineering and Design, Vol.165, pp.111-141.

.

- 4. ANSYS User's Manual Volume I, ANSYS Inc., Ch3.
- 5. , , , (1999), "KALIMER ", '99

2.5