

Abstract

In this study, a nuclear design for a fission Mo-99 HEU target was performed. A reliability of MCNP-ORIGEN code system used for target design was evaluated. Mo-99 production amount predicted by "MCNP-ORIGEN" was consistent with that by "MCNP-Analytic Eq." within 1.6% difference. A parametric study was done for the optimization of fuel thickness, Mo-99 recoil loss rate to the variation of thickness, target cladding materials, the thickness of irradiation guide tube, and barrier materials. The key parameters which affect the Mo-99 yield ratio and surface heat flux were fuel thickness, cladding materials, and recoil loss rate. The most effective fuel thickness was shown to be 20μ m in case of no barrier tube. Cintichem target loaded in HANARO without modification could not satisfy the safety limit such as reactivity worth change limit and ONB temperature. The UO₂ electro-deposited target coated with 10 μ m Ni barrier material in a dimension of 50cm axial length and 11 μ m fuel thickness satisfied the all design constraints and produced radioactive waste 4 times less than that of original Cintichem target.

T c - 99m 80% Mo-99 Tc-99m T c - generator 가 T c - 99m 3 \$(가) . 가 5% 가 . • Nordion 7 NRU(National Research Universal) , 80% (U.S. Department of Energy) , 10 30%, 100% SNL(Sandia Nation Laboratory) ACRR(Annular Core Research Reactor) Mo-99 1996 .(1)(2)(3)1995 'Fission Moly Mo-99 6 Ci ,, , 1996 "Fission Mo Mo-99 . 1997 44 ,, "Fission ⁹⁹Mo ,, 가 가 3가 MCNP-ORIGEN LEU , M o- 99 .(4)(5) MCNP-ORIGEN , 가 (electro-deposited) . $(Ci^{99}Mo/gU)$ Mo-99 ,

2. MCNP-ORIGEN2 MCNP - ORIGEN MCNP-4B , ORIGEN-2 MCNP-4B Mo-99 HANARO **ORIGEN-2** 가 Mo-99 가 Mo-99 MCNP-ORIGEN 가 2.1 M o - 99 Mo-99 1) (\mathbf{n}, f) (n,

, (II, J) , (II, J)Mo-99 , U-235 (direct fission) , U-235 Y^{99} , Zr^{99} , Nb^{99} -

1.

T

Sr-99, Y-99, Zr-99, Nb-99, Mo-99

Sr-98, Y-98, Zr-98, Nb-98, Mo-98

inn 0.0 (n.n 15.0 N⁵ N N N²

$$\frac{dN^{1}}{dt} = \gamma^{1} \sigma_{f} \mathcal{O} N^{235} - \lambda^{1} N^{1}$$
(1)

$$\frac{dN^2}{dt} = \gamma^2 \sigma_f \Phi N^{235} + \lambda^1 N_1 - \lambda^2 N^2$$
(2)

$$\frac{dN^3}{dt} = \gamma^3 \sigma_f \Phi N^{235} + \lambda^2 N^2 - \lambda^3 N^3$$
(3)

$$\frac{dN^4}{dt} = \gamma^4 \sigma_f \Phi N^{235} + \lambda^3 N^3 - \lambda^4 N^4$$
(4)

- γ^{i} : fission yield fraction of nuclide *i*,
 - : fission cross section of fissile nuclide, σ_f
 - λ^{i} : deday constant of nuclide *i*,

$$\varphi$$
 : neutron flux .
N²³⁵ (σ_a^{235})

$$7$$
 t 235 U (5)

$$N^{235}(t) = N_0^{235} e^{-\mu t}$$
(5)

,
$$N_0^{235} =$$
 number density of U^{235} at t=0, $\mu = \sigma_a^{235} \Phi$.
 $N^i 7 I t=0$ (1), (2), (3) (4)
 $N^i (t)$ (6) .

$$N^{i} = \frac{\gamma^{i} \sigma_{f} \varPhi N_{0}^{235}}{\mu - \lambda^{i}} (e^{-\lambda^{i} t} - e^{-\mu t}) + \sum_{l=1}^{i-1} \frac{\gamma^{l} \sigma_{f} \varPhi N_{0}^{235} \prod_{k=l}^{l-1} \lambda^{k}}{\mu - \sum_{k=l}^{i} \lambda^{k}} \prod_{k=l}^{i} (e^{-\lambda^{k} t} - e^{-(\mu - \sum_{l=l}^{k-1} \lambda^{l})t})$$
(6)
Mo-99 3

Mo-99

T

(7), (8)

$$\frac{dN^{99}}{dt} = \gamma^{99} N^{235} \sigma_f^{235} \Phi + \lambda^{b99} N^{b99} + \sigma_r^{98} N^{98} \Phi - \lambda^{99} N^{99} - \sigma_r^{99} N^{99} \Phi$$
(7)

$$\frac{dN^{98}}{dt} = \gamma^{98} N^{235} \sigma_f^{235} \mathbf{\Phi} + \lambda^{698} N^{698} - \sigma_r^{98} N^{98} \mathbf{\Phi}$$
(8)

 γ^{i} : fission yield fraction of nuclide *i*,

- σ_r^i : capture cross section of nuclide *i*,
- N^{i} : number density of nuclide i at time t,
- : microscopic fission cross section of nuclide *i*, σ_{f}^{i}
- λ^{i} : decay constant of nuclide *i*,
- : neutron flux, Φ

b98, 98, b99, 99, 235
98
Nb, 98 Mo, 99 Nb, 99 Mo, 235 U . (6)

(7)
$$\gamma^{99}N^{235}\sigma_{f}^{235}\Phi + \lambda^{b99}N^{b99}$$

$$= \sigma_{f} \Phi N_{0}^{235} e^{-\mu t} \left[\gamma^{99} + \frac{\gamma^{b99} \gamma^{i}}{\mu - \lambda^{i}} \left(e^{-(\lambda^{i} - \mu)t} - 1 \right) + \sum_{l=1}^{i-1} \frac{\gamma^{b99} \gamma^{l} e^{\mu t} \prod_{k=l}^{l-1} \lambda^{k}}{\mu - \sum_{k=l}^{i} \lambda^{k}} \prod_{k=l}^{i} \left(e^{-\lambda^{k}t} - e^{-(\mu - \sum_{k=l}^{k-l} \lambda^{i})t} \right) \right]$$
(9)

$$= \sigma_f \, \mathbf{\Phi} N_0^{255} e^{-\mu_l} \gamma_a^{99}$$

$$= \sigma_f \, \mathbf{\Phi} N^{235} \, \gamma_a^{99}$$
(10)
(11)

i = 4

Nb-99

Mo-99가

99

 γ_a^{g}

yield)

(accmulated

(fission

- yield)
- (saturation)
- 가 Mo-98

3. Simplified Production-Destruction Scheme of ⁹⁹Mo in a Fission Moly Target

(accmulated yield fraction),
$$\gamma_a^{98}$$

⁹⁸Mo ⁹⁹Mo가 t=0 (12) .

 $N^{99}(t)$

•

$$N^{99}(t) = \frac{\gamma_a^{99} N_0^{235} \sigma_f^{235} \mathbf{\Phi}}{\lambda^{99} + \sigma_r^{99} \mathbf{\Phi} - \sigma_a^{235} \mathbf{\Phi}} \left(e^{-\sigma_a^{235} \mathbf{\Phi} \cdot t} - e^{-(\lambda^{99} + \sigma_r^{99} \mathbf{\Phi}) \cdot t} \right) + \frac{\gamma_a^{98} N_0^{235} \sigma_f^{235} \mathbf{\Phi} \sigma_r^{98} \mathbf{\Phi}}{(\sigma_r^{98} \mathbf{\Phi} - \sigma_a^{235} \mathbf{\Phi}) (\lambda^{99} + \sigma_r^{99} \mathbf{\Phi} - \sigma_a^{235} \mathbf{\Phi})} \left(e^{-\sigma_a^{235} \mathbf{\Phi} \cdot t} - e^{-(\lambda^{99} + \sigma_r^{99} \mathbf{\Phi}) \cdot t} \right) - \frac{\gamma_a^{98} N_0^{235} \sigma_f^{235} \mathbf{\Phi} \sigma_r^{98} \mathbf{\Phi}}{(\sigma_r^{98} \mathbf{\Phi} - \sigma_a^{235} \mathbf{\Phi}) (\lambda^{99} + \sigma_r^{99} \mathbf{\Phi} - \sigma_r^{98} \mathbf{\Phi})} \left(e^{-\sigma_r^{98} \mathbf{\Phi} \cdot t} - e^{-(\lambda^{99} + \sigma_r^{99} \mathbf{\Phi}) \cdot t} \right)$$
(12)

가 2.3 MCNP-ORIGEN 가 MCNP-ORIGEN Mo-99 MCNP-가 Mo-99 Mo-99 MCNP - ORIGEN 가 4 5 . HANARO Rill Core HWNARORill Cire ORIGEN2 Mb499 AdMity MCNP-4B Mp-89 Activity MINP-48 Analytic Eq. and Target Description and Target Discription

MCNP-(12) (12) , ORIGEN-2 가 가 ,

가 Mo-99 가 MCNP-4B . ORIGEN-2 가 (biased)

Mo-99 Mo-99

HANARO ORIGEN-2 Mo-99

1.6% . , MCNP-ORIGNE

가

3.

가 가

.

· · ·

4. HEU

L

가 (Surface Heat Flux, SHF), (Recoil-Loss Rate) . , Mo-99 가 . 가 가 가 가 Mo-99 가 가 가 가 •

(electro-deposited) 기

 ,
 (proven technology)

 Cintichem
 .

 7
 OR-3, 5

 7
 OR-3, 5

 8OC (Bottom
 25cm)

 7
 140Cm

 7
 140Cm

60μm 7¹ .

Thick. (µm)	U Loading /target (g)	Yield Ratio (Ci ⁹⁹ Mo/gU)	Max. SHF (MW/m ²)	(%/ 10µm)	Max. SHF (%/10μm)
10	2.70	34.54 ± 0.4387	0.587 ± 0.0235		
20	5.39	30.99 ± 0.4525	1.113 ± 0.0548	- 10.3 ± 1.83	89.6 ± 10.8
30	8.09	29.00 ± 0.4698	1.451 ± 0.0730	- 6.4 ± 2.11	30.4 ± 8.33
40	10.78	27.17 ± 0.4510	1.867 ± 0.1307	- 6.3 ± 2.25	28.7 ± 10.4
50	13.47	24.88 ± 0.4155	2.120 ± 0.1168	- 8.4 ± 2.26	13.6 ± 9.4
60	16.16	23.71 ± 0.4102	2.432 ± 0.1321	- 4.2 ± 2.35	14.7 ± 8.4
70	18.84	22.61 ± 0.3889	2.732 ± 0.1553	- 4.6 ± 2.39	12.3 ± 8.4
80	21.53	22.24 ± 0.4114	2.920 ± 0.1723	- 1.6 ± 2.50	7.0 ± 8.5
90	24.21	20.91 ± 0.3074	3.147 ± 0.1504	- 6.0 ± 2.31	7.5 ± 7.8

4.2

I.

i (recoil range) μ , i (rate of production of recoils of species i), $p_i(x)$? x ? h , (source term) , $q_i(x)$, (removal)

$$q_{i}(\mathbf{x}) = \frac{1}{2} (1 + \frac{x}{\mu}) p_{i} (\text{for } 0 \ x \ \mu)$$
(13)

$$= p_i \qquad (\text{for } x > \mu) \tag{14}$$

가

, (fission yield fraction) y_i i (balance) . $\lambda_i C_i$

 $(\lambda_i = \text{decay constant}, C_i = \text{concentration of product i})$

(fission fragment)

. , (source term) (13) (14) , p_i y_iF (F=fission reaction rate), μ μ _{ff} (range of fission fragment) .

$$\frac{dC_{i}(x,t)}{C_{i}} = \frac{(1 + \frac{x}{\mu_{ff}})}{2} \qquad (\text{for } 0 \ x \ \mu_{ff}) \qquad (15)$$

$$= 1 \qquad (\text{for } x \ \mu_{ff}) \qquad (16)$$

, , $C_i = \frac{y_i F}{\lambda_i} (1 - e^{\lambda_i t})$.

(target fuel outer surface)

Recoil Loss Fraction = $\frac{S_o}{4V}$ ($\mu - \frac{1}{12}r_o \mu^2$) (17) where, S_{\circ} : target fuel outer surface area r. : target fuel outer radius µ : fission fragment recoil range 가 . 가 (17)Mo-99 가 Mo-99 . UO_2 가 6 10µm Mo-99 $7 \mu m$ 가 Mo-99 8μm 가 가 10 가 가 フト 10µm 20%

4.3

•

I

 $14.6 \pm 4.2(\%)$

Cintichem

2. Mo-99

2

Thick.(µm)	Clad. Mat.	Yield ratio ± (Ci ^{99s} Mo/gU)	(%)
15		31.95 ± 0.4100	146+22
15		37.40 ± 0.6171	14.0 ± 2.3
30		29.00 ± 0.4698	125+25
		33.53 ± 0.5465	13.3 ± 2.3
60		23.71 ± 0.3153	157.24
00		28.13 ± 0.4700	13.7 ± 2.4

•

4.6

7.3m/sec

OR (guide tube)

OR

3.

•

	Yield ratio ±		
Thick.(mm)	(Ci ^{99s} Mo/gU)	(%)	(%)
0.0	29.00 ± 0.4698		
2.0	28.83 ± 0.4613	- 0.59 ± 2.28	0.72 . 1.22
4.0	28.34 ± 0.4563	- 1.73 ± 2.29	-0.75 ± 1.52
6.0	28.37 ± 0.4709	- 0.11 ± 2.31	

4.7

.

가	
Mo-99	

,

,	Mo-9	9	(recoil loss)	
			(recoil barrier	material)
10 µm				
(recoil range)가	6 10µm			
	Mo-99			Mo-99
0%	.(6)			
				•
,				
	가 가			가
(Cu),	(Fe), (Ni),	(Zn)		

4	(barrier	material)
	(

(Ni)

(Fe)

Thickness.(mm)	Yield ratio ± (Ci ^{99s} Mo/gU)	(%)
No barrier material	29.00 ± 0.4221	-
Zn	No Calculation	-
Cu	28.52 ± 0.4613	- 1.66 ± 2.21
Fe	28.94 ± 0.3473	-0.21 ± 2.02
Ni	28.70 ± 0.4162	- 1.03 ± 2.19

4		가	Mo-99		
,	71				
	71		(Zn)	420	
(Cu)				가 1.675 MeV	2.642 MeV

•

5. HEU

L

가가

6. Cintichem Target SHF

Т	Max.SHF (MW/m ²)	Max. Temp. ()		
(T in - T out)		Clad.	Fuel	
()		Outer Surface	Outer Surface	Inner Surface
2.6	2.625 ± 0.0735	377.12 ± 9.6	497.39 ± 10.0	508.51 ± 10.0

5.1.2

Cintichem

가

Cintichem

7 Cintichem Mo-99

가

5 6 day reference 7 . OR 2

• 8 0.75 , • 0.5 , SUS 가 6k g

•

30,000 Ci

7. Cintichem Target Mo-99

Production Yie (Ci ⁹⁹]	eld Ratio ± 1 Mo/gU)	Annual l (Ci ⁹⁹	Production Mo/yr)
Total Production With Recoil Loss		With 1 OR Hole	With 2 OR Holes
22.35 ± 0.16	21.66 ± 0.16	14,793	29,586

8. Cintichem Target

,

Uranium	HLW	LLW	Clad. Amount
(g)	(/yr)	(/yr)	(g)
860	152.5	104.0	5,836

5.2 HEU

가 . 가 9 Cinctichem SUS , 5-1 5-3 UO_2 가 . 5-4 5-5 UO_2 (Ni) . 9 10 11 , OR 5-1 5-3 가 , 50cm 10**µ**m 11**µ**m . $UO_2 \\$ 5-5 가가 0.2911±0.2667 % 137.70 ± 5.3

_	
	ь
/	

Case #	Axial Length (cm)	Fuel Thickness (µm)	U Loading (g/target)	OR3, 5 Total U Loading (g)	Reactivity Worth (%)
5-1		10	4.58	9.15	0.0733 ± 0.2578
5-2		11	5.03	10.07	0.2524 ± 0.2667
5-3	50	12	5.50	10.99	0.3344 ± 0.2827
5-4		10	4.58	9.15	-0.0291 ± 0.2558
5-5		11	5.03	10.07	0.2911 ± 0.2667

,

SHF 10.

.

9.

.

Case	Max.	Max. Temp.			
$\#$ SHF (MW/m^2)	(MW/m^2)	Clad.	Fuel		
		O.S	O.S	I.S.	
5-1	0.788 ± 0.039	139.05 ± 5.2	175.62 ± 5.6	176.12 ± 5.6	
5-2	0.830 ± 0.043	144.67 ± 5.7	183.22 ± 6.0	183.81 ± 6.0	
5-3	0.859 ± 0.050	148.54 ± 5.7	188.45 ± 6.1	189.11 ± 6.1	
5 - 4	0.796 ± 0.040	138.74 ± 5.2	175.21 ± 5.5	175.32 ± 5.5	
5 - 5	0.788 ± 0.041	137.70 ± 5.3	173.80 ± 5.6	173.91 ± 5.6	

11.

Т

	5 days Irradiation					
Case #	Yield Ratio (Ci ⁹⁹ Mo/gU)		Production (Ci ⁹⁹ Mo/yr)			
	produced	effective	wiht 1 OR hole	with 2 OR hole		
5-1	30.54 ± 0.47	23.956 ± 0.47	3,519	7,022		
5-2	29.93 ± 0.46	24.025 ± 0.46	3,872	7,745		
5-3	29.47 ± 0.46	24.099 ± 0.46	4,237	8,475		
5 - 4	30.66 ± 0.47	30.66 ± 0.47	4,421	8,842		
5 - 5	30.48 ± 0.47	30.48 ± 0.47	4,834	9,669		

12	5-4	5-5			가	•
	32.5	,	22.2	,		6kg
	가					

1	2	•

Case	Uranium	HLW	LLW	Clad. Amount
#	(g)	(/yr)	(/yr)	(g)
5-4	183.2	32.5	22.2	5,836
5-5	202.4	35.9	24.5	5,836

,

5.3

.

A cknow ledgements

'98

REFERENCE

- 1. Richard L. Coats and Edward J. Parma, "Medical Isotope Production: A New Research Initiative for the Annular Core Research Reactor," *Proceedings of the 1994 Topical Meeting* on Advances in Reactor Physics, Knoxville, Tennessee, April 11-15 (1994)
- 2. J. H. Park, et. al., "A Review on the Process Technology for Mo-99 Production," KAERI, KAERI-AR-401/94, (1994)
- 3. B. K. Kim, et. al., "Feasibility Study on Fission Moly Target Development," KAERI, KAERI/ RR-1595/ 95, (1996)
- 4. Myung-Hyun Kim, Dong-Keun Cho and Dong-Sung Sohn, "Nuclear Design of Fission Moly Target in HANARO," Proceedings of International Conference on the Physics of Nuclear Science and Technology, Vol.2, pp.1697-1702, Long Island, New York, Oct. 5-8, (1998)
- Dong-Keun Cho, Myung-Hyun Kim, Dong-Sung Sohn, "Nuclear Design Methodology of Fission Moly Target for Research Reactor," Journal of the Korean Nuclear Society, Vol.31, Number 4, pp.365-374, (1999)
- G. L. Hofman, T. C. Wiencek, E. L, Wood, J. L. Snelgrove, "Development of ⁹⁹Mo Isotope Production Targets Employing Uranium Metal Foils," *Trans. Am. Nucl. Sci.* 77, pp. 100-101, November, (1997)
- 7. M. Necati Özisik, "Heat Transfer : A Basic Approach," New York : McGraw-Hill, (1985)