Seed/Blanket

Abstract

The use of once-through thorium fuel cycle was investigated for the maximization of PWR core performance such as fuel utilization, proliferation resistance, and radio-toxicity reduction of spent fuels. In this paper, nuclear core design was done mainly for the nuclear conversion. The concept of core was based on the seed-blanket unit concept of Radkowsky Thorium Fuel (RTF or RTR)¹. An extensive parametric study including RTF design has been done for the maximization of conversion ratio. The choice of fuel materials were UO_2 ceramic and U-Zr alloy for seed, and (Th,U)O₂ MOX for blanket. Parameters in search were fuel contents, enrichment, fuel radius, and seed/blanket configuration.

The optimized design was found to be almost same with RTF except in a few parameters. The size of seed/blanket unit are modified to the conventional PWR assembly unit for the easiness of reloading. For the benefits in fuel cycle economics, enrichment of uranium was reduced to 6 w/o in seed and 10 w/o in blanket, and U/Zr alloy composition was also modified. Calculation was done for a unit reactor module instead of full core reloading simulation. The conversion ratio of optimized design showed similar value from RTF. Potential benefits from this core are considerable in spent fuel treatment aspects. The total amount of spent fuel could be reduced up to 55% to the conventional PWR once-through cycle. The amount of Pu and fissile contents in Pu could be reduced a lot. These findings conclude that this core gives the better standing in proliferation resistance than a conventional PWR. The thermal power unbalance between seed assemblies and blanket assemblies were high like as in RTF.

가 . 가 . 가 . . 9

module2HELIOS3.Unit module 71^2 71^2 ., 71^2 ..

가 . 기· . 2,775MWth 기·157 가 .

RFTSeed/Blanket. RTF1Seed Blanket Unit(SBU). SBUSBU

,

.

.

2 7ł .

2.

가 .

L

.

 ,
 ,
 RTF
 .

 U-238
 Th-232
 U-233
 5

 .
 .
 .
 7

 5
 7
 .
 7

. 3 batch 100 GWD/MT . , (T h+U)O₂ , 7 U/Zr UO₂ .

3. アト アト ・ ・ 5 UO₂ U/Zr

•

L

				D' D' 1		
			UO_2	UO_2		Pin Pitch
UO_2	20/ 0	0.412 am	20. m/o	10.04	0.412 am	1.295 am
U/Zr alloy	20 w/o	0.413 CIII	20 W/0	10 %	0.413 CIII	1.203 CIII

3.

2.

FIR

Blanket				Module						
Seed Material	Seed Refueling #			Average See			Seed Refueling #			
IVI at ci iai	1	2	3	4	FIR	1	2	3	4	FIR
UO ₂	0.901	0.962	1.003	1.002	0.96	0.737	0.743	0.743	0.741	0.74
U/Zr	0.908	0.967	1.000	1.001	0.96	0.782	0.787	0.786	0.783	0.78

4.

U - 233

3. RTF PWR

.

SWU

	U Weight	Enrichment	Natural U	Separative work	Loaded total
	(T on H.M)	U-235 w/o	(T on)	(kg SWU)	number of fuel rods
RT F [*]	36.8	20	1,337	1,570,591	92,316
PWR*	256.6	3.3	1,516	1,215,243	165,792

* 2,775 Mwth, 157 Assembly or SBU

3	RTF	PWR			
		RTF PWF	ર		
	RTF		RTF	가 PWR	SWU
			. RTF		
		U/Zr			U/Zr
U		가		U/Zr	U
U - 235		. 4	U/Zr	U	
U/Zr					

U 4. U/Zr

	Aug. Dongitu	Converted Weight Percent (w/o)				
U to Zr volume ratio	$[g/cm^3]$	U-235	U - 238	Zr		
		(118811e w/0)				
10 : 90	7.70	14.81 (60)	9.28	75.31		
30 : 70	10.21	11.17 (20)	44.67	44.16		
50 : 50	12.72	8.96 (12)	65.72	25.32		
70 : 30	15.23	7.48 (8.57)	79.84	12.68		
90 : 10	17.74	6.43 (6.67)	89.85	3.62		

U - 238

U - 238 5 U - 235

,

U - 235 U - 238

•

가

7 · U/Zr . U

.

fissile

- 가
- U

•

5

I.

U - 235가

5. U/Zr

.

U

SWU

SWU

가

 $UO_2 \\$

20 %,

.

Volume notio	Loaded U-235	Loaded U-238	Loaded U	Required Nat. U	SWU
Volume ratio	(k g)	(kg)	(kg)	(kg)	(kg)
U 10- Zr90		10.3	25.7	3,015	3,820
U30-Zr70		61.8	77.2	2,995	3,536
U50-Zr50	15.4	113.4	128.8	2,975	3,322
U70-Zr30	-	164.9	180.3	2,954	3,134
U90-Zr10		216.4	231.8	2,949	2,984

가 4.

. 6

U/Zr

가 6.0 w/o

가

 $T hO_2 = 80\%$

가

75 % 0.33 cm 10 w/o 0.4025 cm .

1:3 Checkerboard . 가

6		
υ	٠	

Parameter	Seed	Blanket			
Fuel Assembly Size, cm	21	21.61			
	U/Zr Metal Fuel	(T h +U)O ₂			
Fuel Material Composition	U content : 75 %	UO ₂ content : 20 %			
	U enrichment : 6.0 w/o	U enrichment : 10 w/o			
Initial Eucl Weight (kg HM)	U 460	Th - 337			
mittai ruei weigiit (kg H.M)	0 - 400	U- 92			
Fuel Radius, cm	0.33	0.4025			
Number of Guide Tubes	24 + 1 (Central)				
Reactivity Control	Control Rod +	None			
Reactivity Control	Burnable Poisons	None			

7.	2-Group	Cross	Section
----	---------	-------	---------

I

	RTF		PV	PWR		Optimized Design	
	Fast	Thermal	Fast	Thermal	Fast	Thermal	
D [cm]	1.48304	0.43009	1.43546	0.44825	1.44199	0.43273	
_a [1/ cm]	7.2057E-03	7.5368E - 02	8.1270E - 03	7.0883E-02	8.7687E-03	7.0847E - 02	
f [1/cm]	4.6324E-03	1.1863E - 01	5.5295E - 03	1.1143E - 01	4.7862E - 03	1.0428E - 01	
r [1/cm]	2.0049E-02	-	1.8186E - 02	-	1.9003E - 02	-	
$[1/cm^2sec]$	2.0516E+14	5.2953E+13	2.2458E+14	5.5910E+13	2.4115E+14	6.3484E+13	
1/ 2	3.8743		4.0168		3.7986		
Resonance escape							
Probability	7.356	2E - 01	6.9114E - 01		6.8426E - 01		

8. Module

4.2 가

FIR 가 FIR . 8 가 . 9 8,325 GWD PWR 83.17 PWR . 3,000 EFPD 31% , 364.33 111.5 PWR 254.9 44% 3,000 EFPD heavy metal(Th, U) 11.32 (U-235:4.2) PWR 9.46 (U-235:5.56) Th-232 U-233 1.097 PWR 120% . . U - 233 .

8. FIR

	S	Awaraga EID				
	1	2	3	4	Average FIR	
Optimized Design	0.55	0.60	0.60	0.60	0.58	
PWR			0.42			

9. 8,325GWD

	Optimized Design	PWR
Effective Operation Day	3,000	3,000
Requirement of Th-232 (Ton)	39.64	0
Requirement of U-238 (Ton)	77.74	256.62
Requirement of U-235 (Ton)	5.43	7.71
Th-232 Mass in Spent Fuel (Ton)	35.70	0
U-238 Mass in Spent Fuel (Ton)	74.57	252.72
U-235 Mass in Spent Fuel (Ton)	1.23	2.15
Pu-239 Mass in Spent Fuel (Ton)	0.42	1.11
Pu-241 Mass in Spent Fuel (Ton)	0.12	0.24
Actual Consumption of Th-232 (Ton)	3.95	0
Actual Consumption of U-238 (Ton)	3.17	3.90
Actual Consumption of U-235 (Ton)	4.20	5.56

T

가

				가	
(1.88	0.72 ,	0.24	0.96	PWR	
PWR .	. 10	가	가		
Pu-238, Pu-242		, Pu-239			가

Pu - 238

.

•

10.	Pu			
	Seed	Blanket	Seed + Blanket	PWR
Pu - 238	0.03	0.09	0.07	0.01
Pu - 239	0.46	0.39	0.41	0.59
Pu - 240	0.28	0.17	0.21	0.21
Pu - 241	0.14	0.15	0.15	0.14
Pu - 242	0.09	0.20	0.16	0.05

11

.

4.4

가

가 . 가 10 가 가 가

1	1	
1	1	٠

[kg/yr]

	Seed	Blanket	Seed+Blanket	PWR
Np-239	3.9	2.9	6.8	13.1
Am - 241	0.2	0.1	0.3	0.8
Am - 243	1.1	2.2	3.3	6.2
Cm - 242	0.1	0.1	0.2	0.5
Cm - 244	0.4	2.4	2.8	2.9
T ot al	5.7	7.7	13.4	23.5

Coefficient)

	(Moderator	Temperature
(Fuel Temperature Coefficient)		9

9. MTC FTC

•

Power Density [w/cm'3]

12. Peaking factor

	Seed	Blanket	Seed + Blanket	PWR
BOC	1.1228	1.1025	2.4575	1.0775
EOC	1.0148	1.0564	1.5375	1.0184

I

REFERENCE

1. A. Galperin, P. Reichert, and A.Radkowsky, "Thorium Fuel Cycle for Light Water Reactor-Reducing Proliferation Potential of Nuclear Power Fuel Cycle," Science & Global Security, Volume 6, pp265-290, 1997.

- V. Arkhipov, H. J. Rutten, and A. Galperin, "Progress Summary of the IAEA Coordinated Research Program on the Potential of Thorium-based Fuel Cycles to Constrain Pu and to Reduce Long-lived Waste Toxicity," ICENES'98, The 9th International Conference of Emerging Nuclear Energy System, Tel-Aviv, Israel, June 28 - July 2, 1998.
- 3. R.J.J. Stamm'ler, J.J. Casal and E.A. Villarino, HELIOS Method, HELIOS Documentation Rev. No. 2, Scandpower A/S, 1993.
- 4. Myung-Hyun Kim, Jae-Yong Lim, "Nuclear Core Design of a High- Converting LWR with Thorium Fuel," Proceedings of International Conference on Mathematics and Computation, Reactor Physics and Environmental Analysis, Madrid, Spain, Sept. 27-30, 1999.
- 5. Myung-Hyun Kim, Il-Tak Woo and Hyung-Kook Joo, "Advanced PWR Core Concept with Once-Through Thorium Fuel Cycle," Proceedings of International Conference on Future Nuclear System, Global'99, Jackson Hole, WY, U.S.A., Aug. 30 - Sep. 2, 1999.