
Abstract

A loose part, located in the reactor coolant system (RCS) of a nuclear power plant (NPP),

can cause damage to the components of the RCS by impacting on the components and can

threaten the safety of the NPP. Therefore a reliable means to detect a loose part should be

provided to secure the safety of the NPP. Detection of a loose part is accomplished using

sensors attached to the components which measures the signals generated by the impacts of

the loose part on the components

Through this study, an improved technique to determine the loose part location has been

developed for the reactor coolant system of a nuclear power plant . The adoption of the

Wigner-Ville distribution function makes it possible to reduce the errors involved in

determining the arrival time difference of waves on structures, which enables a more accurate

evaluation of the loose part location.

Experiments were carried out to prove the performance and applicability of the improved

technique. The experimental results show that the proposed technique determines the loose

part location more accurately than conventional methods.

1. Introduction

A part of a mechanical component in the RCS may be loosened from its original location

by various mechanisms, such as fatigue damage due to flow-induced vibration. Since the

loose part circulates with reactor coolants in the RCS, it may make repetitive contact with

the components of the RCS. This may damage the structural integrity of the components,

therefore it is necessary to identify the location of the loose part and to remove the loose

part from the RCS in order to secure the safety of the NPP. Due to this necessity, much

research has been carried out for the development of techniques to determine loose part

location.

Krister( 1) introduced a method to determine impact location using both the arrival time
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difference and the damping value of impact signals measured with two accelerometers.

Olma(2 ) also introduced another method to determine the impact location using both the

arrival time difference between longitudinal and transverse waves measured with one

accelerometer and the propagation velocity of the two waves.

Since these methods use only the shape of time history of impact signals, the estimation of

the arrival time difference depends on the sensitivity of the accelerometers and the noise

level. Therefore, these methods have an obvious limitation on the estimation of the arrival

time difference. When an impact is made on a plate, three kinds of waves are generated,

longitudinal, transverse, and bending waves. Since the longitudinal and transverse waves are

relatively smaller than bending waves, the signals measured with the sensors represent mainly

characteristics of bending waves. Therefore, it is extremely difficult to extract the longitudinal

and transverse waves from the impact signals practically. In order to overcome the

deficiencies in the conventional methods, a new method using bending waves will be

introduced in this paper.

This method uses dispersion characteristics of bending waves such as propagation velocity

and arrival time difference of bending waves with different frequencies. The dispersion

characteristics of bending waves can be obtained through the transformation of impact signals

using the Wigner-Ville distribution function. The distance from the impact location to the

signal measuring point can be calculated using information on propagation velocity and arrival

time difference of two bending waves having different frequencies.

2. Wigner-Ville Distribution Function

When non-stationary signals like a transient signal are interpreted, signal analysis in

frequency domain, a method mainly used in interpreting stationary signals, can handle only

part of the signal information, and hence it has to be accompanied with signal analysis in

time domain.

As one of the methods enabling simultaneous signal analysis in time and frequency domain,

the Wigner-Ville distribution function is drawing a lot of attention lately. The Wigner-Ville

distribution function was first proposed by Wigner in 1932, and concept of the function was

re-established by Ville in 1948. The following is a definition of the Wigner-Ville distribution

function which is expressed by consecutive time and frequency(3 ) .

W ( t , ) =
+ ∞

- ∞
s( t + 2 ) s * ( t - 2 ) e - j d (1)

Here, t , , and represent time, frequency and time delay respectively. s ( t) is time

history, and the asterisk(*) denotes the complex conjugate. W ( t , ) means the Wigner-Ville

distribution function, which is a function of time and frequency. According to the equation

(1), the Wigner-Ville distribution function is Fourier transform value for the time delay of

s( t +
2

) s* ( t -
2

) which is a time-dependent autocorrelation function, and represents the



distribution of power on the time-frequency plane(4 ) .

Accordingly, the total energy of the signal can be obtained by integrating the Wigner-Ville

distribution function for the entire time and frequency range. Also when we integrate the

Wigner-Ville distribution function for a frequency range at a particular time t , we can obtain

an instant signal power at that time. When we integrate the Wigner-Ville distribution function

for a time range at a particular frequency , we can obtain the energy spectrum density at

that frequency.

In order to calculate the Wigner-Ville distribution function from signal data of limited

record length, we need calculate an approximate discrete value of the equation (1). The

approximate discrete value of the equation (1) can be expressed as follows.

W( m t , n ) 2 t
N - 1

k = - N
g m ( k) e - i 2 n k / K (2)

Here, g m ( k) = s [ ( m + k) t] s* [ ( m - k) t] , where k , m and n are integers, N is the number

of time history data. Also K = 2N , = / K t and t is a sampling time. Using the

periodicity of signal data with limited record length, we can express the equation (2) as

follows(5 ) .

W ( m t , n ) 2 t
K - 1

k = 0
g m ( k) e - i 2 n k / K (3)

We can see that W ( m t, n ) from equation (3) is related to the discrete Fourier

transform(DFT) of g m ( k) . In view point of signal processing of discrete signals, calculation of

the Wigner-Ville distribution function requires a different method of signal processing from

the general signal processing method.

In order to obtain from equation (3) the Wigner-Ville distribution function for time history

whose data number is N, the DFT for number of 2N must be carried out . Also in the

equation(1), since s( t +
2

) s* ( t -
2

) is a function of the product of s( t) distanced by the

integral variable
2

on both sides of time t , the sampling frequency diminishes by one-half

the sample frequency of the original signal s(t) when analyzing the Wigner-Ville distribution

function. As a result, in order to avoid the aliasing phenomenon when analyzing the

Wigner-Ville distribution function, the Nyquist frequency must be limited to 1/4 of the

sampling frequency of s( t) signal. With respect to the Nyquist frequency, if we use the

complex analytic signal obtained by the Hilbert transform instead of using the actual time

signal, when calculating the Wigner-Ville distribution function, we can take the Nyquist

frequency to 1/2 of the s(t) signal sampling frequency.

In equation (2), when we consider that the frequency resolution range of the Wigner-Ville

distribution function is = / 2N t , and the frequency resolution range is 2 / N t when

taking general signal processing for the identical signal, we can tell that the frequency



resolution range of the Wigner-Ville distribution function is 1/4 smaller than the frequency

resolution range for general signal processing, and hence the frequency resolution range

improves.

Another characteristics of the Wigner-Ville distribution function is that, since it is a bilinear

transformation, the value of the function can be either positive or negative, and that

interference may occur in the function. Interference occurs when there is a cross-correlation

among signal components, and when interference occurs the value of the Wigner-Ville

distribution function appears in a variated form, hence increasing distribution error.

One method of solving the problem of the Wigner-Ville distribution function having

negative values, and minimizing the distribution error is to smooth the function. The

smoothing method is done by carrying out a two-dimensional convolution integration of the

Wigner-Ville distribution function and the smoothing function along the time and frequency

axis. The smoothed Wigner-Ville distribution function is expressed as follows.

Ws( t , ) =
+ ∞

- ∞
W( t - t' , - ' ) G( t' , ' ) dt' d ' (4)

Here Ws( t , ) represents the smoothed Wigner-Ville distribution function, W ( t , ) represents

the function before it is smoothed, and G( t, ) represents the smoothing function. In general,

for a smoothing function, Gaussian window is frequently used, and its form is as follows.

G( t , ) = 1
2 t

ex p [ - ( t2

2 2
t

+
2

2 2 ) ] (5)

Here, t , represents the standard deviation for each time and frequency range, and it

determines the size of the Gaussian window. Cartwright proved that the values of 2
t and 2

are all positive, and that the smoothed Wigner-Ville distribution function is always positive

when 2
t

2 1/4
(7 ) . And it must be noted that, when the Wigner-Ville distribution function

is smoothed, interference can be reduced, but the resolution range of the time and frequence

can be increased.

One of the useful characteristics of the Wigner-Ville distribution function is that the

primary momentum obtained along the time axis has the same value as the group delay for

each frequency. The equation for the group delay ( ) is as follows(6 ) .

( ) =

+ ∞

- ∞
t W( t , ) d t

+ ∞

- ∞
W( t , ) dt

(6)

The characteristics of the Wigner-Ville distribution function concerning group delay are used

effectively for analysis of the characteristics of bending wave propagation in plates, in other

words, it is used for calculating the arrival time of bending wave.



3. Dispersion Characteristics of Bending Waves in Flat Plate

When a wave manifold consisting of waves with different frequencies propagates in a

media and each wave with different frequencies propagates at different velocities, we call this

phenomena dispersion. Bending waves in a flat plate show dispersion characteristics when

they are propagated on the surface of the flat plate. A high frequency bending wave having

a short wave length propagates at a high velocity while a low frequency bending wave

having a long wave length propagates at a low velocity.

The equation of bending wave propagation on a flat plate, showing dispersion

characteristics, can be derived from the wave equation on a flat plate as follows:

C B = ( E I
m

)
1
4 ( )

1
2 (7)

Here, CB is the propagation velocity of the bending wave, E is Young's modulus of a flat

plate, I is the cross-sectional 2nd moment per unit area, m is the mass per unit area, and

is the angular frequency. In equation (7), the propagating velocity of bending waves is

proportional to the square root of the angular frequency and is the same as the phase

velocity, that is the velocity of phase propagation. The group velocity of waves which

represents energy propagation velocity, is defined as follows(7) :

C g = d
dk

(8)

Here, Cg is group velocity and k is the wave number. From equation (8) and the wave

equation of bending waves representing the relationship between angular frequency and wave

number, it is derived that the group velocity of bending waves on a flat plate is twice the

phase velocity as follows(7 ) :

C g = 2 C B (9)

4. Method for Estimating an Impact Location

Generally, if an impact is made at a point on a plate as shown in Fig. 1, then bending

waves with various frequencies are generated and propagated in a radial direction

simultaneously, but the arrival time of each bending wave at a measuring point on the plate

is not the same due to the dispersion characteristics of bending waves. That is, at a

measuring point, bending waves with high frequency arrive earlier than those with low

frequency due to the difference of propagation velocity.

Therefore, if we can measure the time that each bending wave with various frequencies



proceeds to a certain distance, then it is possible to infer the propagation velocity of bending

waves experimentally.

Generally, an acceleration signal obtained at an accelerometer displays manifold

characteristics of bending waves with various frequencies. Using equation (1), the acceleration

signal can be transformed into a Wigner-Ville power distribution, which represents the time

dependent power distribution of each bending wave with various frequencies in a time and

frequency domain as shown in Fig. 2. The Wigner-Ville power distribution of a bending

wave with a certain frequency has several peaks. The first peak corresponds to the maximum

power of the original bending wave without influence of reflected waves and the remaining

peaks signify the maximum power of reflected waves. Therefore, the curve connecting the

first peaks of the Wigner-Ville power distribution of signals (called "arrival time curve")

represents the arrival time of bending waves with various frequencies at a measuring point . A

typical example of the arrival time curve is shown in Fig. 3, which is derived from the

Wigner-Ville power distribution of signals received at two points A and B. Here, we can

easily find that the measuring point A is closer to the impact location than point B, since

the arrival time curve at point A is closer to the axis of "t=0" than the curve at point B.

From Fig. 3, we can estimate the time that a bending wave with a certain frequency

proceeds to the distance from A to B ( r B - r A ). Therefore, if the distance of r B - r A is

known, it is possible to estimate the propagation velocity of a bending wave with a certain

frequency using equation (10).

v f =
r B - r A

tf
(10)

where, v f is the propagation velocity of a bending wave with frequency f and tf is the

traveling time of a bending wave with frequency f by the distance of r B - r A .

If two propagation velocities of bending waves with frequencies f 1 and f 2 and the arrival

time difference between the two bending waves at the point A are known, the distance r A

between the impact location and A can be estimated using equation (11).

r A = tf 1, f 2 v f 1 v f 2 / ( v f 1 - v f 2) (11)

where, tf 1, f 2 is the arrival time difference between two bending waves with frequencies f 1

and f 2 , at point A, respectively, and v f 1, v f 2 are propagation velocities of bending waves with

frequencies f 1 and f 2 ,, respectively.

Similarly, the distance of r B and r C can be estimated. Finally, if we draw circles around

the center points of A, B, and C with corresponding radiuses r A , r B , and r C as shown in

Fig. 1, we can see that the intersection point of the circles is the impact location of a loose

part .



5. Experimental Results

Experiments were carried out to prove the performance and the applicability of the

proposed method. The experimental setup is shown in Fig. 1. A plate is hung at its upper

two supports. Accelerometers are mounted at points A, B, and C on the plate, and an impact

is made at point O. The plate is of rectangular shape with width, length, and thickness of

1.5 m, 1.2 m, and 5 mm, respectively, and the material is steel with a density and Young's

modulus ( E ) of 7,860kg/m3 and 200GPa, respectively. The theoretical propagation velocity of

bending waves of this plate is expressed as equation (12) from equation (7).

C B = ( E I
m

)
1
4 ( )

1
2 = 6 .925 f ( m / s) (12)

where f represents frequency of bending waves.

Positions of the accelerometers (B&K Type 4393) and their distances from the origin O on

the plate are given in table 1.

Table 1 Position and distance of accelerometers

x (cm) y (cm) r (cm)

A 0 - 40 40

B 40 30 50

C - 50 40 64

An impact signal is generated by an impact hammer (B&K Type #8202) and the impact

location is determined to be the geometric center of the plate in order to minimize the

reflection effect of bending waves from the edge of the plate. Signals received by impact

hammer and accelerometers are amplified by a four channel pre-amplifier (B&K Type

NEXUS) and acquired by an analyzer (B&K Type PULSE 3560) with a sampling rate of

65kHz.

The time history of the signals measured at the impact hammer and three accelerometers

are shown in Fig. 4. From Fig. 4, we can confirm that the bending waves arrive earlier at

the accelerometer located closer to the impact position while the reflected bending waves

arrive earlier at the accelerometers located closer to the edge of the plate. Due to dispersion

characteristics, the bending wave with a high frequency arrives earlier at the accelerometer.

Contour lines of the Wigner-Ville power distribution in time-frequency plane for

acceleration signal at point A are shown in Fig. 5. The first contour line (closest to the axis

of "t=0") represents the arrival time of bending waves with various frequencies at point A,

the center line of which corresponds to the arrival time curve. The remaining contour lines

signify the arrival time of reflected bending waves at point A. Here, we can notice that the

first contour line is not parallel to the frequency-axis due to the dispersion characteristics of

bending waves. Similarly, the arrival time curves can be obtained at points B and C.



Fig. 6 presents the arrival time curves at points A, B, and C, which corresponds to the

arrival time of bending waves at points A, B, and C.

Fig.7 indicates power velocity vs. frequency of bending waves, which was determined from

equation (10) using both the distances from the impact location to two accelerometers and the

arrival time difference of bending waves determined from Fig. 6. The propagation velocity for

each frequency determined using the experimental results shows that the relative percentage

error is about 10% compared with the theoretical velocity determined from equation (7).

Fig. 8 shows histograms of rC , which is the distance from the impact location to point C.

They are calculated from equation (11) using two arbitrary velocities of bending waves in the

frequency range of 1000 ~ 2000 Hz and the arrival time difference of the two bending

waves at point C. In Fig. 8, the median value is estimated to be the rC . Fig. 8(a) and Fig.

8(b) show rC 's estimated value using the theoretical and experimental velocity information,

respectively. Comparing these two results, the deviation of the experimental result from the

true value is smaller than the theoretical one. This seems to arise from the fact that material

properties of the plate used in the calculation of equation (12) may be different from the

actual value. Similarly, rA and rB can be obtained using the experimental results. In table 2,

the estimated rA , rB , and rC values are shown and the accuracy of the estimated results are

within 10%.

Table 2 Estimation of impact position

rA rB rC

True (m) 0.4 0.5 0.64

Estimation (m) 0.43 0.52 0.63

Error (%) 7.5 4 1.5

6. Conclusion

A improved method to determine a loose part location is proposed, which may be applied

to reactor coolant system of nuclear power plant . This method uses the Wigner-Ville

distribution function in order to estimate the arrival time difference of bending waves with

various frequencies.

Experiments were carried out to prove the performance and the applicability of the

proposed method. The experimental results show that the propagation velocity of bending

waves with various frequencies can be calculated using the arrival time difference between

two measurement points.

Also, the distance between a measurement point and impact location of a loose part can be

estimated using propagation velocity and arrival time difference between two bending waves

with different frequencies at one measurement point . Experimental results for estimation of the

distance shows relative percentage error to be within 10% compared with actual distance.
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Fig. 3 An Illustration of arrival time curves Fig. 4 Acceleration signals measured at impact
hammer and 3 measuring points

Fig. 5 Contour lines of Wigner-Ville power
distribution at point A

Fig. 6 Arrival time curves at the point A, B
and C

Fig. 7 Power velocity vs. frequency of bending
waves and their relative percentage errors
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(a) theory , (b) experiments
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