

Optimization of Redundancy by using Genetic Algorithm

(Redundancy)

(Local minimum)

가

(MIL-HDBK-217)

ABSTRACT

The design and development of a reliable protection system has been becoming a key issue in industry field because the reliability of system is considered as a important factor to perform the system's function successfully. Plant Protection System (PPS) guarantees the safety of plant by accident detection and control action against the transient conditions of plant.

This paper presents the analysis of PPS reliability and the formal problem statement about optimal redundancy based on the reliability of PPS. And the optimization problem is solved by genetic algorithm. The genetic algorithm is a useful tool to solve the problems, in the case of large searching, complex gradient, existence local minimum. The effectiveness of the proposed optimization technique is proved by the target reliability of one channel of PPS, using the failure rate based on the MIL-HDBK-217.

가

I.

(Input1=Input2=Input3=Input4)

.

•

I.

.

2

$$\begin{array}{cc} P(t) & t \\ (1) & (3) \end{array}$$

$$\frac{dP_4(t)}{dt} = -4\lambda P_4(t)$$
(1)

,

$$\frac{dP_3(t)}{dt} = 4\lambda P_4(t) - 3\lambda P_3(t)$$
(2)

$$\frac{dP_2(t)}{dt} = 3\lambda P_3(t) - 2\lambda P_2(t)$$
(3)

$$\frac{dP_F(t)}{dt} = 2\lambda P_2(t) \tag{4}$$

$$(t=0) .$$

$$P_{4}(0) = 1, P_{3}(0) = P_{2}(0) = P_{F}(0) = 0$$

$$(1-3) (5-7) .$$

$$P_{4} = e^{-4\lambda t} (5)$$

$$P_{3} = 4e^{-3\lambda t} - 4e^{-4\lambda t} (6)$$

$$P_{2} = 6e^{-2\lambda t} - 12e^{-3\lambda t} + 6e^{-4\lambda t} (7)$$

$$1 P_{4} P_{3}$$

$$P_{2} \qquad (8) \qquad .$$

$$R_{pps} = P_{4} + P_{3} + P_{2} \qquad (8)$$

$$= 6e^{-2\lambda t} - 8e^{-3\lambda t} + 3e^{-4\lambda t}$$

$$MTTF \qquad (9)$$

$$MTTF_{pps} = \int_0^\infty \boldsymbol{R}_{pps}(t) dt$$
(9)

가

$$=\frac{13}{12\lambda}$$

.

(steady-state availability: $A(\infty) = A_{ss}$)

•

$$A_{ss-pps} = \frac{MTTF}{MTTF + MTTR}$$

$$MTTR = \frac{1}{\mu}, \quad \mu \quad (repair rate) \quad .$$

$$3 \quad . A \quad (\lambda)$$

$$1^{*} 10^{-4} \quad , B \quad 2^{*} 10^{-4} \quad . C \quad 3^{*} 10^{-4} \quad .$$

$$4 \qquad \mu \quad (maintenance rate) \qquad 7^{1}$$

$$(10)$$

I.

3. pps 4. PPS MTTR(1/m) 7 (A: $1*10^{-4}$, B: $2*10^{-4}$, C: $3*10^{-4}$)

6 PPS 7 Bypassed PPS MTR 7 (A: $1*10^{-4}$, B: $2*10^{-4}$, C: $3*10^{-4}$)

•

•

,

(Redundancy) 가

,			10	가	
PPS		m 1		(redundancy)	
m 2	, r	n 3			

.

(16)
$$m_i$$
 i m_i i m_i
7) (weight value) p_i
Minimize { $\sum_{i=1}^{N} w_i m_i$ }
Subject to $\prod_{i=1}^{N} R_i(t) \ge R^*$
and $0 \le R_i \le 1 \quad \forall_i$
 R^*
 R_i
(16)
(17)

$$\begin{pmatrix} 16 \end{pmatrix} \qquad \qquad \gamma \mathbf{r} \qquad \qquad \begin{pmatrix} 17 \end{pmatrix} \\ \begin{pmatrix} \varphi \end{pmatrix} \qquad \qquad \qquad \gamma \qquad \qquad \gamma \mathbf{r} \qquad \qquad \gamma \mathbf{r}$$

10

$$\begin{array}{l} \text{Minimize} \left\{ \sum_{i=1}^{N} w_{i}m_{i} + \gamma \ \psi \ (\prod_{i=1}^{N} R_{i}(t)) \right\} \\ \psi = \left[\min \left(\left[\prod_{i=1}^{N} R_{i}(t) - R^{*} \right], 0 \right) \right]^{2} \end{array}$$

$$(17)$$

.

$$Maximize \left\{ \begin{array}{c} . (20) \\ \frac{1}{\sum_{i=1}^{N} w_{i}m_{i} + \gamma \ \phi \ (\prod_{i=1}^{N} R_{i}(t))} \end{array} \right\}$$
(19)

$$\operatorname{Fitness} = \frac{1}{\sum_{i=1}^{N} w_i m_i + \gamma \, \phi \, \left(\prod_{i=1}^{N} R_i(t) \right)} \tag{20}$$

1

,

가 가

가

(natural selection)

•

,

•

I.

(generation)

.

(Local minimum)

•

1.		(one-chromoso
	(nonulation)	
3	(population)	
5. ,		
1) (Coding) :	, 2	
2) 7 (Evaluation) :	(fitness)	가 .
3) (Reproduction) :	. (
roulette wheel selection)	
4) (Crossover) :	가	
A1 A2 A3 A4 A5 A6		
Crossover point		
B1 B2 B3 B4 B5 B6		
BI BZ BO AH AO AO		
5) (Mutation) :		
C1 C2 C3 C4 C5 C6		
C1 C2 F3 C4 C5 C6		
	71	
	71	
	1	
·	1	
가		
MIL - HDBK - 217	10 ⁶	
1 A/D	1	
2 2 DSP(320C50)	, PLD	
. 3 1	3	
가 :		
1. (Connection)		
2. (Voter) .		

1		Box 1		
Part Number		(10 ⁶ hour)		(10 ⁶ hour)
1674	12bit A/D Converter	0.080981	10	0.80981
7770- 12	Dual power supervisor	1.101960	1	1.101960
2860	Power supply controller	0.077565	1	0.077565
2544	Power supply circuit	0.057856	1	0.057856
1	Box 1		: 2.	047193

Box 2

2

L

3

Box 3

가

Part Number		(10 ⁶ hour)		(10 ⁶ hour)	Part Number		(10 ⁶ hour)		(10 ⁶ hour)
320C50	DSP processor	0.609501	4	2.438004	320C50	DSP processor	0.609501	2	1.219002
27PC256	PROM	0.121793	16	1.948688	27PC256	PROM	0.121793	8	0.974344
62990	Fast SRAM	0.159277	16	2.548432	62990	Fast SRAM	0.159277	8	1.274216
7064	PLD	0.173746	4	0.694984	7064	PLD	0.173746	2	0.347492
7770- 12	Dual power supervisor	1.101960	2	2.20392	7770- 12	Dual power supervisor	1.101960	1	1.101960
2860	Power supply controller	0.077565	2	0.15513	2860	Power supply controller	0.077565	1	0.077565
2544	Power supply circuit	0.057856	2	0.11573	2544	Power supply circuit	0.057856	1	0.057856
1	Box 2	:	10	104888	1	Bo x 3		: 5.	052435

4

Population size : 100 Probability of crossover P_c : 0.7 Probability of mutation P_m : 0.1 Number of generation :10 20000(Hour) 0.95 . 1 , box 2 3 , box3 0.1429 3 box 1 , · $(R_{ch-1}) = 0.9532$ R1=0.9599, . R2=0.9939, R3= 0.9991 . 11 가 .

safety , voter

(Segmentation)

A cknow ledgement

1

[1]	Barry W. Johnson, Design and Analysis of Fault Tolerance Digital Systems, Wesley, 1989	Addison
[2]	"	Vol. 15,
	No. 1, pp. 11 - 12 pages, 1983.	
[3] [4]	, 1999 C. GALIKOWSKY " Optimal redundancies for reliability and availability of series	sy stem s "
	Microelectron. Reliability vol 36 No 10 pp.1537-1546 1996	
[5] [6]	, MMIS KAERI/RR-1901/98,1999. 3 "	",
	vol 48 no 1 1999.1	

[7] M. Runwei Cheng., Genetic Algorithms And Engineering Design, A Wiley-Interscience Publication, 1996