Criticality Evaluation of High Density Spent Fuel Storage Rack under Normal Condition Using Burnup Credit

Abstract

The high density spent fuel storage rack Boraflex was known to experience changes of its physical property and to dissolve under exposure to radiation in an aqueous environment for long period of time. In this study, the criticality evaluation for spent fuel storage rack of Ulchin Unit 2 under normal condition was performed assuming complete loss of ¹⁰B from the Boraflex and applying burnup credit. Criticality evaluation code KENO-V.a. from SCALE4.4 system was benchmarked against critical experiments to obtain the calculation bias and bias uncertainties. The manufacturing tolerances of nuclear fuel and storage rack and their reactivity uncertainties were derived, as well. Considering those bias and uncertainties of calculation, the criticality of spent fuel storage under normal condition was conservatively

evaluated. The criticality evaluation result using burnup credit can be presented as a spent fuel loading curve that indicates the acceptable burnup domain in spent fuel storage pool. The spent fuels with various initial enrichments and discharge fuel burnup can be safely accommodated in the storage without taking any boron credit from Boraflex, provided the combination falls within the acceptable domain in the loading curve. The spent fuel with initial enrichment of 5.0w/o was evaluated to meet the subcritical safety if its burnup is over 43.0GWD/MTU. The criticality evaluation result also showed that spent fuels with the initial enrichment less than 1.6w/o were able to be stored in the storage pool regardless of their burnup. Conclusively, in the Region 2 of the spent fuel storage pool, the maximum k_{eff}, considering all uncertainties, was calculated as 0.94818.

1.

	Westinghous	e	V5H(VANT	AGE-5H)	가	,
	1					
1990	2		가	3.5w/o	4.2w/o	,
		가				3.5w/o
3.8w/o		1996	가		가	
5w/o		가				

2			Westinghous	se V5H, Frama	tom STD, KWU	J-JDFA	
		가	Westinghouse	V5H	가 가		
V5H							가
		가	2				
V5H		17 X 17		, 24	가	1	
	3	WH-V5H, Fram	atom - STD KW	VU-JDFA			[3].

2.3

		Region 2			1				
가	8.8″,	0.075″		0.	.0235	"			
				10.4″,	10	0.2″		•	
						water g	gap		
	0.	$075 \pm 0.007''$	$^{10}\mathbf{B}$	0.0238g/cm ³		[3].			

3. 가

3.1 가

	가 .				
•	가 가	가	(Westinghouse V5H).		
•		2,500ppm			
	가 (, 가)			
•		20°C 가			
•			가	,	
•			¹⁰ B	가	가
•					

• 7 : CASMO-3[4], SCALE4.4 CSAS (KENO-V.a)[5].

3.2

.

.

[6]. 가 0.00656 0.00373 [6]. 가 t 95% 95% **7** ↓ 40 k ₂₅=1.960 [7], (1) 0.00656, 0.00731 . $\Delta k_{u} = \overline{\Delta k} \pm k_{n} \overline{\sigma_{\Delta k}} \qquad (1)$ k " 95/95 3.3 가 가 95% 95% 0.95 k eff 가 . , k_{eff} [3]. $k_{eff}^{max} = k_{Calc} + \Delta k_{Bias} + \Delta k_{Ax} + \Delta k_{Unc} \dots (2)$ k_{Calc} : $riangle k_{Bias}$: $riangle k_{Ax}$: $riangle k_{Unc}$: $riangle k_{Unc}$ $\Delta k_{\rm Unc} = (\Delta k_{\rm b}^{2} + \Delta k_{\rm i}^{2} + \Delta k_{\rm g}^{2} + \Delta k_{\rm t}^{2} + \Delta k_{\rm c}^{2} + \Delta k_{\rm c}^{2} + \Delta k_{\rm d}^{2})^{1/2} \dots (3)$ $\bigtriangleup k_{\,\text{b}}$: $\bigtriangleup k_{\,i}$: $riangle k_g$: water gap $\bigtriangleup k_{\,t}$: $riangle k_{E}$: $riangle k_{
ho}$: UO₂ $riangle k_d$: CASMO-3 가 . $riangle k_d$ k zero k _{Calc} 5% USNRC [8], $k_{\,\infty}$ (2) $k_{\,\,\infty}$ k_{∞} 가 $k_{Calc} \textbf{7} \textbf{F}$. $k_{\,C\,alc}$ $k_{\,\infty}$ $k_{\,C\,a\,lc}$. , (2) (3)

•

,

L

CASMO-3 SCALE4.4 27 NITAWL-KENO.V.a. 7 . CASMO-3 .

3.4 가

4.

(3) 7 . CASMO-3 . . , USNRC 5% [8]. 4 . .

3.5 가 7ŀ

가 end effect가 . . 5 [9].

 5
 2
 7
 4.0w/o

 32.1MWD/kgU
 0.0008
 .

가 3.6 가 $5.0 \mathrm{w/o}$ 2 Region2 가 , 3 1.6w/o 5.0w/o 6 가 (Loading Curve) 3 . (Acceptable Region) , 가 가

 7^{1} 7^{1} 7^{1}
 2^{241} Pu
 7^{1} 7^{1} 7^{1}
 7^{1} 5.0w/o
 7^{1} 3.0MWD/kgU

 7^{1} 7^{1} 7^{1} 8_{eff}
 7^{1} .
 Region 2
 k_{eff}

 0.94818 (k_{eff} 0.95).
 7^{1} 7^{1}

 フト 5.0w/o
 フト

 1.6w/o
 5.0w/o

 フト
 フト

- Northeast Technology Corp., Guidelines for Boraflex Use in Spent Fuel Storage Racks, EPRI TR-103300, Dec. 1993.
- 2. NRC, Revision to License Amendment Request : Boron Credit in the Spent Fuel Pool, Feb. 1997.
- Stanley E. Turner, Criticality Safety Evaluations of the Fuel Storage Rack for Ulchin Unit 2, Holtec Report HI-951287, Holtec International, July 1995.
- 4. M.Edenius and A. Ahlin, CASMO-3: New Feature, Benchmarking, and Advanced Applications, Nuclear Science and Engineering, 100, pp342-351, 1988
- 5. SCALE-4.4 Manual, ORNL, 1998.
- 6. , ⁷, '00
- 7. W. Mendenhall, Introduction to Probability and Statistics, Duxbury Press, 1987.
- Laurence Kopp, Guidance on the Regulatory Requirements for Criticality Analysis of Fuel Storage at Light Water Reactor Power Plants, Proceeding of Consultancies : Implementation of Burnup Credit in Spent Fuel Management System, IAEA-NEFW, Vienna, 1998.
- W. Fecteau, Effect of Axial Burnup on Fuel Storage Rack Burnup Credit Reactivity, ANS Transaction, 62, 1990.

2

(1999 12

)

		()
	F-STD	153
17x 17	KOFA	235
	VANTAGE-5H	-
		388

Burnup	Reactivity, keff				
(GWD/MTU)	WH-V5H	KWU-JDFA	F-STD		
0 5 7 10 13 15 20	0.97798 0.94242 0.92920 0.91031 0.89207 0.88010 0.85180	0.97458 0.93932 0.92626 0.90746 0.88909 0.87707 0.84856	0.97790 0.94235 0.92912 0.91024 0.89200 0.88003 0.85174		

3. 2

Fuel Rod Data						
Specification	Fuel Type					
specification	WH-V5H	F-STD	KWU-JDFA			
Cladding O.D., cm	0.950	0.950	0.950			
Cladding I.D., cm	0.836	0.836	0.822			
Cladding Material	Zr	Zr	Zr			
Stack Density, g-UO ₂ /cc	10.412 ± 0.200	10.412 ± 0.200	10.412 ± 0.200			
Pellet Diameter, cm	0.819	0.819	0.805			
Enrichment, w/o U-235	5.00 ± 0.05	5.00 ± 0.05	5.00 ± 0.05			
Active Fuel Length, cm	365.8	365.8	365.8			
Fuel Assembly Data						
Fuel Rod Array	17 X 17	17 X 17	17 X 17			
Number of Fuel Rods	264	264	264			
Fuel Rod Pitch, in.	1.2598	1.2598	1.2598			
Number of Thimbles	25	25	25			
Thimble O.D., cm	1.204	1.224	1.224			
Thimble I.D., cm	1.123	1.143	1.140			

Case	Tolerance	Uncertainty
Absorber Width	± 0.007 in.	± 0.00375
Box I.D.	± 0.03 in.	± 0.00383
Water Gap Spacing	± 0.04 in.	± 0.00536
SS Thickness	± 0.005 in.	± 0.00045
Fuel Enrichment	±0.02 %	± 0.00120
Fuel Density	$\pm 0.20 \text{ g/cm}^{3}$	± 0.00162
Statistical Sum (root-mean square)		± 0.00786
with Other Uncertainties		
in Bias		± 0.00548
in Depletion Calculation		± 0.01540
Total Uncertainty		± 0.01813

Burnup (MWD/MTU)	3.0w/o ²³⁵ U	4.0w/o ²³⁵ U
0	- 0.0036	- 0.0037
20,000	- 0.0033	- 0.0036
30,000	- 0.0003	- 0.0026
40,000	+0.0027	+0.0008
50,000	+0.0041	+0.0037

6. 2	Region2 가
가	$5.0 \text{w/o}^{235} \text{U}, 43.0 \text{MWD/KgU}$
	CASMO-3, SCALE4.4(KENO-V.a.)
. kcalc	0.92050
Bias. k _{Bias}	0.00656
, k _{A x}	0.00080
. kunc	
• Bias	0.00731
• Absorber Width	0.00375
• Inner Box Dimension	0.00383
• Water Gap Thickness	0.00536
\cdot S/S Thickness	0.00045
• Fuel Enrichment	0.00120
• Fuel Density	0.00162
• Depletion Calculation	0.01540
•	0.01877
	0.92941 ± 0.01877
(k _{eff})	0.94818
	0.95000

1. Region 2

T

2 Region2