Development of Failed Fuel Database and Hydriding Failure Analysis

Abstract

Nuclear fuel failure is one of the critical issues in the nuclear power operation since it brings about the reduced power operation and the potential threat to safe operation.

Since 1979 nuclear power plants have been operating in Korea and experiencing a variety of PWR nuclear fuels designed and manufactured by several fuel vendors, foreign or domestic.

In this study, PC-based a database for failed nuclear fuel, called Korea Nuclear Fuel Database (KNFDB), is developed using relational database system. KNFDB contains a number of detailed information on the fuel failures that had occurred since 1986 in Korean nuclear power plants: nuclear design, fuel design, power history, coolant activity data, visual inspection, etc. It will provide the statistical basis for R&D of high performance fuel and expertise for preparation for the remedy of damaged fuel on site.

As an example of the applications, hydriding failure case is chosen for the analysis in the KNFDB. In this analysis it is found that hydriding failures have certain characteristics and the properties in the post-defective fuel deviates from the intact fuels.

2. KNFDB(Korea Nuclear Fuel DataBase)

.

2

.

가. KNFDB

L

가

I.

B 7 B1 . B

Simens 가 () 17 × 17 KOFA (Korea Optimized Fuel Assembly) B1 9 (: 3.80wt%) low tin Zry-4 3 . 가 6 7 9 (a)), ((9 (b)). B1 11806 MWD/MTU . 1 A 1 <u>A</u>___ PIE A 1 [2], hydride blister . 10 blister 11 A 1 11 가 (r=0.6R). 1200 2000mm (columnar grain) (12). 가 A 1 . EPRI ESCORE (EPRI Steady-state Core Reload Evaluator) code 가 [5]. 가 activated process . 가 ESCORE code 13 (a) (b) PIE . . ESCORE А NDR 가 가 , stoichiometry , PIE . ESCORE 13(c)) (A_____ A2 B____ 7___ B1 가 14 A 2 hydride blister 가 가 (95mm) A 1 (15). [1], H_2/H_2O 가 가 [6]. 가 가 가 ESCORE 16 (a) .

가 가 가 가 16(b)). (가 В **B**1 7 PIE test 가 . B1 17 . **B** 1 . 가 baffle 66% , 가 . • , 가 가 hyperstoichiometry (UO_{2+x}) UO_2 $UO_{2\,+x}$ 가 가 . . 가 가 ESCORE 13 16 가 가 가 (matrix) 가 가 _ H_2/H_2O 가 가 가 가 가 (18). (gap) 가 가 가 가 가 가 가 가 10% 가가 $UO_2 \\$ 가 hyperstoichiom etric . 가 가 가 . 4. KNFDB 1986 NDR , (GUI) 가 • KNFDB

•

.

,

I

- [1] J.H. Davies and G.A. Potts, Post-defect Behavior of Barrier Fuel, Fuel for the 90s: Proc. ANS/ENS International Topical Meeting on LWR Fuel Performance, Avignon, France, Vol. 1 (April 1991) 272
- [2] F. Garzarolli, R. von Jan, and H. Stehle, The Main Cause of Fuel Element Failure in Water-Cooled Power Reactors, A tomic Energy Review, 17 (1979) 31
- [3] J.C. Clayton, Internal Hydriding in Irradiated Defected Zircaloy Fuel Rods, Zirconium in the Nuclear Industry: Eighth International Symposium, ASTM STP 1023 (1989) 266
- - , 3 (1995) 611
- [5] Combustion Engr. Inc., ESCORE-the EPRI Steady State Core Reload Evaluator Code, EPRI NP-5100 (1987)
- [6] S. Vaknin and D.R. Olander, Secondary Hydriding of Defected Zircaloy-Clad Fuel Rods, EPRI RP-1250-23 (1972)

1.

)

(

	1989	1990	1991	1992	1993	1994	1995	1996
Handling Damage		6	2			1	1	
Debris	146	11	67	20	13	6	10	1
Baffle Jetting								
Grid Fretting	14	18	9	33	36	9	33	19
Primary Hydriding		1		4				
Crud/Corrosion							4	1
Cladding Creep							1	
Collapse								
Other Fabrication	1	15	1	5	3	1	15	3
Other Hydraulic					1			
Inspected/Unknown					36	36	13	2
Uninspected	43	58	35	61	14	3	12	1
T ot al	204	109	114	123	103	56	89	27

I

2. KNFDB E-R Diagram

3 (a). KNFDB

		a-La	ading	Patte	rn —				1A - 6				v		1		
	UCM2 플친 2호기 로 7 로		R	р	N.	M	E.	K.	1	H	8	F	E	0	C	8	
	Patern Inquiry		1						H29	114	HES						
land His	Damage Inquiry	2					HSI	111	J34	131	J29	ø	HSO				
iona mis.		3				H25	J17	162	J55	819	J53	169	J01	H07			
NDH		3			HD4	H37	J37	822	H57	J41	HAD	805	JZI	H47	H05		
D Pattern		5		H38	J19	139	H35	175	HUS	H51	HI9	152	HIG	128	J08	H43	
anada	-	6		115	J64	805	J43	839	J42	H05	J57	833	J58	809	J50	103	
Retieve	[Operating Period] [1996/01/24] [1907/04/24]	7	HEB	135	J55	HSZ	H17	165	HES	HZZ	HE4	170	HEI	HH5	J51	123	H
ti. Indo.	Cycle Fromation	8	JUS	122	610	145	HRE	HOS	HED	808	HI3	H16	H34	144	617	132	1
Fuel	Region Information	9	HE4	133	J76	HEZ	H27	J54	HDB	HIS	HII	123	ніп	H48	J67	126	+
n. Into.		10		113	J48	816	J47	830	J?4	H23	J73	831	JEB	815	JED	106	
etrieve	FA Setlinguiry	11		晤	J10	130	H41	J61	H12	HSO	H28	165	HAE	136	J16	HOG	
		12			H15	H54	138	623	H#9	172	HES	618	J27	H44	H02		
24		13				H01	J18	171	J45	812	J49	163	J07	H14			
	i internet i	14					HEI	105	J25	124	J40	J04	HEB				
Quit	Loading Frint	15							HES	120	HEO						

3 (b). Loading pattern

4. Westinghouse

L

6.

8. A1

'sunburst'

(a)

(a)

(b)

9. B1

7. A2 가

L

UO2 Radial Direction

11. A1

15. A2

T

PIE

16. B208-R8

