

2000

Abstract

A study on hydrogen control model of MELCOR identifies that MELCOR has a very simple model on the following items : gas temperature effect, multiple fuels and inertants effect, and deflagration to detonation transition (DDT) criteria. As the gas temperature increases, combustion initiates at the lower fuel concentration and the range of fuel concentration for combustion grows. As the mole fractions of H_2 and H_20 increase, the range of combustible fuel concentration increases too. On the contrary, it decreases as the mole fractions of CO and CO_2 increase. The deflagration to detonation transition (DDT) criteria are modified to consider temperature and multiple gas components such that as the CO_2 mole fraction increases, the detonation cell width increases. MIDAS will include these items for improvement.

1.

MELCOR[1]		MIDAS	MELCOR	
	MELCOR			
			/ 가	
MELCOR	MELCOR		/ 가가	
-	(DDT)	가		
가				
/ フト				
MIDAS				

2. MELCOR

MELCOR			(가	가 0.1	,	가 0.0	5, 7	가
	가 (0.55)				가	
	,			. , MA	AP[2]	가		
가					가	가	LeChatelier	
	가		, 가	가			가	
	, 가				가		. MELCC)R
		(, 가 0.14	,	가 0.09	,	가 0.3)
	가		- ,	, MELCOR		가	가	
	가				(DDT)		가가 .	

2.1 가

		2가		Lean Flammabi	lity Limit	(LFL)	
Ri	ch Flammability L	.imit (RFL)	가	. (가	가 LF	٦L
H2%	가	RFL	H2%	가	.)		, Zero
inertan	t intercept		, RFL	LFL			, inerting
point	100% inertant po	oint		. 가			

,

•

XLu	=	XLLu	+	Mlu	(Т	-	298)	
XRu	=	XRLu	+	MRu	(T	-	298)	

XLu :		(T)	LFL
XRu :	(T)	RFL	
XLLu :		LFL	
XRLu :		RFL	
MIu ,MRu :	[2]		

.

Inert point 가 100% inert point inertant . inert point (yi) yi = yiSTP + (ystia - yiSTP) (T - 298) / (Tauto - 298) yiSTP : inerting Tauto : ystia : inerting 가 가 LFL Intercept RFL 가 500 K Intercept , LFL , RFL Inert . Inertant 가 lean rich limits LFL Intercept **RFL** Intercept a.) [2]. . ((H₂ Rich Limit: 0.78, H₂ Lean Limit: 0.045, XHRLD: 0.715 XHLLD: 0.085) 가 XHLD= XHLLD + MHLLD (T - 298)= 0.085 + (-0.000084) (500 - 298) = 0.06803 XHRD= XHRLD + MHRLD (T - 298)= 0.715 + (0.0002667) (500 - 298) = 0.76887 XHLD : (T) H_2 LFL H_2 RFL XHRD : (T) XHLLD : (298K) H_2 LFL XHRLD : (298K) H_2 RFL MHLLD : H₂ Lean Limit H₂ Rich Limit MHRLD : b. LFL RFL 298K RFL LFL [2]. MHLD = 22.5MHRD = -0.8452inertant H20 0.1 LFL LFL1 RFL RFL1 . MHLD = (0 - 0.1) / (0.06803 - LFL1) = 22.5

LFL1 = 0.07247MHRD = (0 - 0.1) / (0.76887 - RFL1) = -0.8452RFL1 = 0.65055c. Inert point Inert point coordinates . H2O in H2-Air-H2O : 0.52 inert point (yi) yi = yiSTP + (ystia - yiSTP) (T - 298) / (Tauto - 298) yiSTP : inerting : 0.52 Tauto : : 983 K ystia : inerting : 0.74 yi = 0.52 + (0.74 - 0.52) (500 - 298) / (983 - 298) = 0.585가 2.2 가 가 가 가 가 가 가 LeChatelier 가 가 가 가 가 / 가 . RFL Intercept , LFL , RFL LFL Intercept 가 298K 가 0.1 , 가 lnert (H_2) (CO) (CO₂) 0.05, (H₂0) 가 0.3, 가 0.1 (Air) 가 0.45 가 . a. Inertant 가 lean rich limit LFL Intercept RFL Intercept .(LeChatelier) [2].

.

$$L = \left[\sum_{i} Ci / Li\right]^{-1}$$

$$Li = LFL$$

$$L = LFL$$

$$Ci =$$

 $R = \sum_{i} Ci Ri$ Ri = RFL

R = RFL Ci = H_2 Rich Limit: 0.715, H₂ Lean Limit : 0.085 CO Rich Limit : 0.68, CO Lean Limit : 0.159 L1 = 0.085, C1 = 0.1 / (0.1+0.05) = 0.667, L2 = 0.159, C2 = 0.05 / (0.1+0.05) = 0.333R1 = 0.715, R2 = 0.68 $L = [C1 / L1 + C2 / L2]^{-1} = [0.667 / 0.085 + 0.333 / 0.159]^{-1} = 0.1$ $R = C1 R1 + C2 R2 = 0.667 \times 0.715 + 0.333 \times 0.68 = 0.703$ b. LFL RFL curve $MI = (f1 / MI1 + f2 / MI2)^{-1}$ Mr = f1 Mr1 + f2 Mr2f1 f2 fraction (f1 + f2 = 1) $(f_{1}=0.3/(0.3+0.1)=0.75, f_{2}=0.25, M_{1}=22.5, M_{2}=8.0, M_{1}=-0.8452, M_{2}=-0.811)$ $MI = (0.75 / 22.5 + 0.25 / 8)^{-1} = 15.48$ $Mr = 0.75 \times (-0.8452) + 0.25 \times (-0.811) = -0.837$ (1) yI = MIx + bIyr = Mrx + br..... (2) x : fuel mole fraction y : inertant mole fraction $bI = yI - MIx = 0 - 15.48 \times (0.1) = -1.548$ $br = yr - Mrx = 0 - (-0.837) \times (0.703) = 0.588$ y| = 15.48 x + (-1.548)(2) yr = (-0.837)x + 0.588(1) c. Inert point xi = 1 / (f1 / xi1 + f2 / xi2)= 1 / (0.75 / 0.52 + 0.25 / 0.20)= 0.371 x11 : H20 inert point in H2-Air-H20 : 0.52 x12 : CO2 inert point in CO-Air-CO2 : 0.20 1 .

2.3 (DDT)

가 (DDT) MELCOR 가 0.14 가 0.09 가 0.3 , , 가 가 . 가 가 가 detonation cell width () , , 7* 가 .DDT 가 가 NUREG/CR-4803[3] 7 SYSTEM 80+[4] 가 가 EPRI ALWR [5] 가 detonation cell width (characteristic length) 가 DDT 가 . 가 detonation cell width .

a.1 : 가 Lechatelier 가 fraction 가 fraction fraction .

 $X_f = X_{H2} + FX_{CO}$

	F :	가	0.6	가
0.54				

b. 2 : 373K _{H2O} . (1) [6]

c. 3 : H₂0 (2) [7] $'_{H2O} = _{H2O} X (_{T} / _{373})_{H2O}$ _{тн20}: Т _{н20}

d. 4 : 373K H_2O C0₂ $'_{CO2} = _{H2O} X S$ (_{CO2} / _{H2O}) (3) [7] S 373K

e. 5 : CO_2 (4) [7] $"_{CO2} = '_{CO2} (_{T} / _{373})_{CO2}$

f. 6 =	: ' _{H2O} +	"CO2								
3.			가							
3.1 가		가								
(H ₂ 0)	:	298K , 50	00K	800K			가	7}	(H ₂) . 2.1	가
		2	가	가	가	가		가		
3.2 가		가		가						
가	5	가		가					가 기	ŀ
		가			/ 가				7	የት .
mo I	e fractio	$H_2 =$	0.1, 00	$= 0.05, H_2$	0 = 0.3,	$CO_2 = C$	J.1, Air ح	'= 0.45 L	ЦО	0405
П ₂	0.2	., 0.3	,	0	.15,0.25		ц		⊓ ₂ ∪ 3	0.4, 0.5 7L 7L
3	, 00 ₂	3	0.5	Ha	가	•	11 ₂ フト	0.2, 0.	5	21 21 Ha
0.1	0.2	가	가 비。	0.2	0.3		가		가	가
가		. CO	0.1	5,0.25		가	가	4		4
CO	가		가				CO	0.05	6 0.15	가
가 CO	0.15	0.2	5 가		가			フ	ŀ	. H ₂ 0
0.4,	0.5		가 기	ł 5		•	5		H_2O	가
가				H_2O	0.3	0.4	가	가	H ₂ 0 0	.4 0.5
가		가	가		ł		. CO ₂	0.2	2, 0.3	가
가	6		6		:0 ₂	가	•	가		71
002	0.1 가	0.2	가	71 UO ₂	0.2	0.	.3	71		∕ †

3.3 (DDT) 가

 DDT
 detonation cell width ()
 EPRI
 가

 가
 가
 가
 가
 가
 가

 가
 가
 가
 가
 가
 가

 가
 가
 가
 가
 가
 가

 가
 가
 15%
 25%
 가
 가
 가
 25%

 가
 가
 7,8
 .
 7,8
 가
 가
 25%

 가
 가
 7,8
 .
 7,8
 가
 가
 25%

 가
 가
 7,8
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 <

4.

MELCOR

가 가 가 가 가

MIDAS

1. R.M. Summers, et al., "MELCOR Computer Code Manuals," SNL, NUREG/CR-6119, SAND97-2185, 1997.7

2. "MAAP4(Modular Accident Analysis Program for LWR Plants Code Manual,"EPRI,1994.5

3. "The possibility of local detonations during degraded core accidents in the Bellefonte Nuclear Power Plant," NUREG/CR-4803, SAND-86-1180, 1986.

4. System 80+, Standard Design CESSAR Design Certification, Combustion Engineering.

5. FAI, "Technical Support for the Hydrogen Control Requirement for EPRI Advanced Light Water Reactor Requirements Document," Task 8.3.5.4, 1988.6

6. Seong-Wan Hong, et al., "A Study on the Evaluation Methodology of DDT Potential in a PWR Containment during Severe Accidents," SMiRT-15, 1999.8

7. D.W.Stamps, et al., "Hydrogen-Air-Diluent Detonation Study for Nuclear Reactor Safety Analyses," NUREG/CR-5525, 1991.1

1 373K

detonation cell width

		Name		Steam Concentration (%)						
Н			0	5	10	15	20	25	30	35
Y	10		5/35	Ν	Ν	Ν	Ν	Ν	Ν	Ν
D	13		0.3/2.1	1/7	4/28	Ν	Ν	Ν	Ν	Ν
R	15		0.15/1.05	0.4/2.8	1/7	5/35	Ν	Ν	Ν	Ν
0	18		0.05/0.35	0.1/0.7	0.3/2.1	1/7	5/35	Ν	Ν	Ν
G	20		0.03 (D)	0.05/0.35	0.15/1.05	0.4/2.8	1.3/9.1	5/35	Ν	Ν
Е	25	Detonation	0.01 (D)	D	0.05/0.35	0.1/0.7	0.2/1.4	0.7/4.9	2/14	Ν
Ν	30	Cell	0.005 (D)	D	D	0.03/0.35	0.1/0.7	0.3/2.1	0.8/5.6	3/21
G	35	Width(m)/	0.002 (D)	D	D	D	0.09/0.63	0.3/2.1	0.7/4.9	2/14
C	40	Min. DDT	0.007 (D)	D	D	0.07/0.49	0.15/1.05	0.4/2.8	1.2/9.6	4/28
U N	45	Characte-	0.01 (D)	D	0.05/0.35	0.1/0.7	0.3/2.1	1/7	4/28	Ν
N C	50	ristic	0.03 (D)	0.05/0.35	0.1/0.7	0.3/2.1	0.9/6.3	3/21	Ν	Ν
	55	Length (m)	0.05/0.35	0.09/0.63	0.2/1.4	0.7/4.9	3/21	Ν	Ν	Ν
(70)	60		0.1/0.7	0.2/1.4	0.5/3.5	3/21	Ν	Ν	Ν	Ν
	65		0.2/1.4	0.5/3.5	2/14	Ν	Ν	Ν	Ν	Ν
	70		0.5/3.5	1.5/10.5	5/35	Ν	Ν	Ν	Ν	Ν
	75		1/7	5/35	Ν	Ν	Ν	Ν	Ν	Ν
	80		3/21	Ν	Ν	Ν	Ν	Ν	Ν	Ν

N : Not Detonable (Code 100) D : DETONABLE IN ANY COMPARTMENT BECAUSE THE LIMITING SCALE IS ABOUT 0.35M

2		가		d	etonation c	ell width(mm)
	Ste	am Con	centrati	on(%)		
	0	10	20	30	40	
373K	21	31	150	700	3600	
400K	22	30	110	550	3000	
600K	40	43	55	100	380	
800K	60	60	70	90	140	
1000K	80	80	90	110	150]

3 373K

detonation cell width

H2O (%)	0	5	10	15	20	25	30
_{СО2} / _{Н2О}	1	27/24 =1.125	42/30 =1.4	80/58 =1.38	280/140 =2	900/300 =3	2700/670 =4.03

	CO2 C	CO2 Concentration(%)							
	0	5	10	15	20				
373K	20(mm)	27	42	90	260				
400K	22	30	43	78	210				
600K	40	50	70	100	150				
800K	60	70	100	140	200				
1000K	80	95	130	180	230				

가

detonation cell width(mm)

4

가 15% 7 CO2

8 가 25% CO2