UO₂-5wt%CeO₂ additive 7

2000

Effect of Additives and Sintering Atmosphere on Microstructure of UO₂-5wt%CeO₂ Pellet

, , , , , ,

150

가 1700 $UO_2 - 5wt\% CeO_2$ Ta_2O_5 , Al_2O_3 , MoO_3 , Y_2O_3 $N_2 - 8\% H_2$. 가 $N_2 - 8\% H_2 - 8\% CO_2$ additive $UO_2 - 5wt\% CeO_2$ $N_2 - 8\% H_2$ 2-3µm 8-10μm cluster T a₂O₅フト 가 , 7 UO₂-5wt%CeO₂ 11µm가 . Ta_2O_57 가 가 $N_2 - 8\% H_2 - 8\% CO_2$ 31µmフト . 가 UO_2 -5wt% CeO₂ Al₂O₃, MoO₃ $N_2 - 8\% H_2$ 16 $20\mu m$, N₂ - 8% H₂ - 8% CO₂ 33µm 가

Abstract

.

The change in microstructure was investigated in $UO_2-5wt\%CeO_2$ pellet sintered at 1700 in N₂-8%H₂ and N₂-8%H₂-8%CO₂ atmospheres by use of additives such as Ta₂O₅, Al₂O₃, MoO₃ and Y₂O₃. UO₂-5wt%CeO₂ without additives sintered in N₂-8%H₂ atmosphere has inhomogeneous microstructure composed of 2 3µm grain clusters and 8 10µm grains, and small grain growth occurred by addition of Ta₂O₅ in this atmosphere. When UO₂-5wt%CeO₂ doped with Ta₂O₅ was sintered in N₂-8%H₂-8%CO₂ atmosphere, grain size was increased to 31µm. The addition of Al₂O₃ or MoO₃ to UO₂-5wt%CeO₂ increases grain size up to 16 20 µm and 33µm in N₂-8%H₂ and $N_{\,2}\text{-}\,8\%\,H_{\,2}\text{-}\,8\%\,CO_{\,2}\,$ atmospheres, respectively.

1.

			UO_2	가			,	
	UO_2	$Gd_2O_3[1],$	PuO ₂ [2]	Er_2	D ₃			가
	가							,
	,		가	기			,	가
		addit	ive 7	가 ,		[3]		
UO_2	$TiO_{2}[4,5], N$	Nb2O5[6,7],	$T a_2 O_5 [8]$	7	ŀ		가	가
		, UC	$D_2 - CeO_2$			T a ₂ O	₅ 가	
		[8].	,					additive
가					가			
	Та	a2O5, Al2O3	, MoO₃, Y	₹ 2 O 3	additive가	가	$UO_2 - 5wt^{\circ}$	% CeO ₂
N 2 - 8%	6H2 N2-8	% H ₂ - 8% CO	O_2		,	additive	, 가	

•

2.

	IDR - U	O ₂						$2.24\mu\mathrm{m}$	2.27	m^2/g
. CeO ₂	Aldric	h						6.66µ	m, 99.	9%.
$UO_2 - 5wt$	% CeO ₂		(0.05	5, 0.1,	0.2, 0	0.5)wt%	$T a_2 O_5$,	(0.05, 0.1,	0.2,	0.5)wt%
Al_2O_3 , (0	0.05, 0.1, 0.2,	0.5)wt%	M 0O3,	(0.05,	0.1,	0.5)wt%	Y_2O_3		가	
Turbula	2		,	attı	rition	mill	1			
	zinc stearate	ッフト	press			, 3 ton/	cm ²	,		
1700	4	$N_2 - 8\% H_2$	N2-8%	5H2-89	% CO2			. N ₂ -8	3% H ₂	- 8% CO ₂
					1200	N	2 - 8% H 2		2	
			(wat	er imi	mersi	on meth	od)		,	
	linear interce	pt								

3.

$UO_2 - 5wt\% CeO_2$	(0.05 0.5)w t % T a ₂ O	3 ton/cm^2			
,	$6.33 ext{ g/ cm}^3$.		1700	4	
$N_2 - 8\% H_2$, $N_2 - 8\% H_2 - 8\% CO_2$				Fig. 1	
. UO ₂ -5wt%CeO ₂	$N_2 - 8\% H_2$			10.4 g/cm^3 ,	
0.5wt%T a2O5가 가	10.57 g/cm ³	가	, 가	$0.5 wt\% Ta_2O_5$	
가	가	가			

N₂-8%H₂-8%CO₂ T a₂O₅フト 0.1wt% 가 가 가 . CO₂ 가 가 CO₂가 가 가 $. UO_2 - 5wt \% CeO_2$ $N_2 - 8\% H_2$ $7.4 \mu m$, Ta₂O₅가 0.5wt% 가 12**µ**m 가 . UO₂-5wt%CeO₂ N₂-8%H₂-8%CO₂ , CO₂ 가 가 가 $N_2 - 8\% H_2 - 8\% CO_2$. T a₂O₅가 가 가 가, 0.5wt% 가 31.5μm . Fig. 2 UO₂-5wt%CeO₂ $T a_2 O_5 7$ T $N_2 - 8\% H_2$, 170 $N_2 - 8\% H_2 - 8\% CO_2$. UO_2 -5wt%CeO₂ 0 N₂-8%H₂ 2 3µm cluster 8 10 µm 7μm . T a₂O₅ 가 , 가 . 0.5wt% 0.1wt% cluster T a₂O₅가 가 . UO₂ T a₂O₅가 , T a⁵⁺ 가 , $T a^{5+}$ U^{4+} effective positive charge(Ta[']) effective . UO₂ T a₂O₅ 0.33wt% 7 negative charge (Vu') , 1700 H₂ 가 50µm 가 [8]. , $T a_2 O_5$ UO₂-5wt%CeO₂ 7 . , , U⁴⁺ CeO_2 sesquioxide(Ce_2O_3) Ce effective 가 Ta' negative charge(Ce') , Ce' T a₂O₅ フト 가 . $UO_2 - 5wt\% CeO_2$ 1700 N₂-8% H₂-8% CO₂ 10µmフト . T a₂O₅ フト cluster가 $N_2 - 8\% H_2 - 8\% CO_2$ 가 가 $T a_2 O_5$ 가 CeO₂7 Ce₂O₃ CO_2 CeO_2 . , Та effective negative charge Vu' , . $(0.02 \quad 0.5)$ wt%Al₂O₃ 7 $UO_2 - 5wt\% CeO_2$ Fig. 3 . $UO_2-5wt\%CeO_2$ N $_2-8\%H_2$ 10.4 g/ cm³ , $0.05 w t \% A l_2 O_3$ 7 $10.52 g/ cm^3$ 가 가 . N₂-8%H₂-8%CO₂ 가 , 0.1wt% 가 Al_2O_3 $UO_2 - 5wt\% CeO_2$ $N_2 - 8\% H_2$ $7 \mu m$ $, 0.05 wt \% Al_2O_3 7$ 21.6µm 가

, 0.1 0.5wt% 가 19μm가 . UO₂-5wt% CeO₂ N₂-8% H₂-8% CO₂ 10μm Al₂O₃ 0.05wt% 7 34μm 가 가 가 $29 \mu m$ • Al₂O₃ 가 Fig. 4 $UO_2 - 5wt \% CeO_2$. $UO_2 - 5wt \% CeO_2$ $N_2 - 8\% H_2$ Fig. 2 $, Al_2O_3 = 0.05wt\% = 7$, 0.5wt% 가 가 . $N_2 - 8\% H_2 - 8\% CO_2$ $N_2 - 8\% H_2$, . UO₂ Al₂O₃ [9], Al_2O_3 7 , $UO_2 - 5wt\% CeO_2$ Al_2O_3 UO_2 가 . 가 $UO_2 - CeO_2$ Al_2O_3 . Al_2O_3 (melting point) 2050 [10] $UO_2 - 5wt \% CeO_2$ 1700 $. Al^{3+}$ $UO_2 - CeO_2$ 0.057nm , Al[…] 가 , $(0.02 \quad 0.5) \text{ wt}\% \text{ MoO}_37 \text{ } 7$ $UO_2 - 5wt\% CeO_2$ Fig. 5 , Fig. 6 . MoO₃ 0.05wt% 가 $N_2 - 8\% H_2$ フト 16µm , MoO₃ 0.1wt% 기 가 . , $MoO_3 = 0.2wt\%$ 7 가 . $UO_2 - 5wt \% CeO_2$ $N_2 - 8\% H_2 - 8\% CO_2$ 가 10µm , MoO₃ 0.05wt% 가 20µm가, 0.1wt% MoO₃ 가 35µm가, MoO₃ 0.5wt% 가 가 . Mo valence 2 6 $M \circ O_2$, Mo_4O_{11}, MoO_3 . MoO2 1927 , Mo 900 $N_2 - 8\% H_2$, [10]. N₂-8%H₂-8%CO₂ Mo Мо , 가 (mechanism) $UO_2 - 5wt \% CeO_2$ $UO_2 - 5wt\% CeO_2$ $(0.02 \quad 0.5) \quad \text{wt} \,\% \, \text{Y}_2 \, \text{O}_3 \qquad 7$ 1700 $N_2 - 8\% H_2$, $N_2 - 8\% H_2 - 8\% CO_2$ Fig. 7 $V_{2}O_{3} = UO_{2} - 5wt \% CeO_{2}$ $N_2 - 8\% H_2$ $N_2 - 8\% H_2 - 8\% CO_2$. , $N_2 - 8\% H_2 - 8\% CO_2$. Y₂O₃ UO₂

Y³⁺7 ↓ U 78m ol% [11], Vu' . $UO_2 - 5wt\% CeO_2$ $N_2 - 8\% H_2$ 6μm 가 가 가 Y_2O_3 $N_2 - 8\% H_2 - 8\% CO_2$ 가 , 18 $12\mu m$ $7 - 8 \mu m$ cluster가 μm 4. Ta_2O_5 , Al_2O_3 , MoO_3 , Y_2O_3 가 1700 $UO_2 - 5wt\% CeO_2$ $N_2 - 8\% H_2$, 가 $N_2 - 8\% H_2 - 8\% CO_2$, additive . 1. Ta_2O_57 가 $N_2 - 8\% H_2$ $(11\mu m)$, N₂-8% H₂-8% CO₂ $(31\mu m).$ 가 가 2. Al₂O₃ $N_2 - 8\% H_2$ $(20\mu m),$ $N_2 - 8\% H_2 - 8\% CO_2$ 33µmフト 가 가 가 3. MoO₃ 0.1wt% $N_2 - 8\% H_2$ 가 $16\mu m$, N₂-8% H₂-8% CO₂ 34µmフト 0.2wt% . 가 4. Y₂O₃ $UO_2 - 5wt \% CeO_2$

Acknowledgement

5.

- [1] R.J. Beals et al., J. of Am. Ceram. Soc., 48(1965)271
- [2] R.Guldner et al., JNM 178(1991)152
- [3] J. Williams et al., JNM 1(1959)28
- [4] Hj. Matzke, JNM 20(1966)328
- [5] J.B. Ainscough et al., JNM 52(1974)191
- [6] Y. Harada, JNM 238(1996)237
- [7] K.C. Radford et al., JNM 116(1983)305
- [8] H.S. Kim et al., J. of Kor. Nucl. Soc., 28(1996)458
- [9] L.F. Epstein et al., J. Am. Ceram. Soc., 36(1953)334
- [10] G.V. Samsonov, The Oxide Handbook 2nd edition, IFI/Plenum press, 1982
- [11] I.F. Ferguson et al., J. Chem. Soc., p.3679, 1957

Fig. 1 Variations of sintered density and average grain size of UO₂-5wt% CeO₂ and those doped with Ta₂O₅ sintered at 1700 in N₂-8% H₂ and N₂-8% H₂-8% CO₂ atmosphere.

Fig. 3 Variations of sintered density and average grain size of UO₂-5wt%CeO₂ and those doped with Al₂O₃ sintered at 1700 in N₂-8%H₂ and N₂-8%H₂-8%CO₂ atmosphere.

Fig. 5 Variations of sintered density and average grain size of UO₂-5wt% CeO₂ and those doped with MoO₃ sintered at 1700 in N₂-8% H₂ and N₂-8% H₂-8% CO₂ atmosphere.

Fig. 7 Variations of sintered density and average grain size of UO₂-5wt%CeO₂ and those doped with Y₂O₃ sintered at 1700 in N₂-8%H₂ and N₂-8%H₂-8%CO₂ atmosphere.

Fig. 2 Microstructure of UO_2 -5wt% CeO₂ and those doped with Ta_2O_5 sintered at 1700 in N_2 -8% H_2 and N_2 -8% H_2 -8% CO_2 atmospheres.

Fig.4 Microstructure of UO₂-5wt% CeO₂ and those doped with Al₂O₃ sintered at 1700 in N₂-8% H₂ and N₂-8% H₂-8% CO₂ atmospheres.

Fig. 6 Microstructure of UO₂-5wt%CeO₂ and those doped with MoO₃ sintered at 1700 in N₂-8%H₂ and N₂-8%H₂-8%CO₂ atmospheres.