20000

DUPIC (Creep behavior of Simulated DUPIC fuel)

, , , , , , ,

가	35000 MW d/ tU]	DUPIC
			(6.34 M P a)	1973K,
1873K,	1773K		DUPIC	
	MATPRO		UO_2	가
	가		. DUPIC	
	659.0kJ/mol	,	MATPRO	
UO2	(376.9kJ/mol)			
DUPIC	m atrix	가	solid solution	hardening
effect				

A bstract

The compressive creep deformation behavior on simulated DUPIC fuel of spent PWR fuel of 35000 MW d/tU was investigated at 1973K, 1873K, 1773K under hydrogen environment and a constant stress (6.34M Pa). The creep deformation behaviors of simulated DUPIC fuel showed increasing tendency compared with those for pure UO₂ calculated by MATPRO code. It is the hight that metallic precipitates, which are mainly distributed on grain boundaries, cause the easy movement of grain boundaries. So, the creep deformation increases. Also, the creep activation energy of simulated DUPIC fuel was measured to be 659.0 kJ/mol, this is higher than the calculated result by MATPRO code(376.9 kJ/mol). It was considered that the solid solution hardening effect which is caused by soluble materials dissolved homogeneously in the matrix of simulated DUPIC fuel, results in high creep activation energy.

.

Ι.

(swelling)

•

I.

(Pellet-Cladding Interaction, PCI)

,

(instantaneous plasticity)

•

, , , ,

7} U O₂

. (diffusion creep),

(dislocation motion) (grain boundary sliding) , , , , , O/U 가 , [1-4]. , 가 가 3 () 가 . 1 가

 71
 .

 (0.5 T_m)
 2

 $\operatorname{Arrhenius} .$ $\dot{\varepsilon} = A_1 \sigma^n \exp(-Q_c / RT) \qquad (1)$

,

DUPIC DUPIC

1.								
	DUPIC		ADU	(Ammoniu	m diuranat	te)		
	(UO_2)		. 가		35000 MW	/ d/ t U		
		ORI	GEN-2					
,			15		UO_2		가	
						가		,
가	table 1				가	UO_2		
1.2 ton/cm ²	1800			12		DU	PIC	
3 OREOX		1.3	1.65 ton/cm	1 ²		,	1800	,
H ₂ (100%)	10]	DUPIC		
7.874mm	, 10.55g/	/ cm ³						

Elements	Oxides	Oxides g/1000g U	Elements	Oxides	Oxides g/ 1000g U
Zr	ZrO ₂	0.422	Pr	Pr ₂ O ₃	(0.131)
Мо	MoO ₃	0.392	Nd	Nd_2O_3	0.476
Ru	RuO ₂	0.269	Sm	Sm_2O_3	(0.101)
Pd	PdO	0.187	Sr	SrO	0.084
Ba	BaCO ₃	0.218	Y	Y 2O3	0.052
La	La ₂ O ₃	0.143	Rh	Rh ₂ O ₃	0.049
Ce	CeO ₂	0.278	T e	T eO ₂	0.058

Table 1. Contents of fission products added in $UO_{\rm 2}$

.

가 UO_2 (bending) 가 . DUPIC (Unitherm TM 9607, Anter Corp.) 1973K, 1873K, 1773K (6.34 M P a) swelling . 가 가 [5]. έ . $\dot{\epsilon} = \frac{L/L}{t}$

,

t L , L t , t

ш.

1 DUPIC DUPIC MATPRO [6] . DUPIC 6.34MPa 1973K, 1873K, 1773K 1.24556×10⁻⁵, 9×10⁻⁷, 1.31811×10⁻⁷/sec MATPRO UO₂ .

2.

I.

Figure 1. Temperature dependence of steady state creep rate of pure UO₂ and simulated DUPIC fuel

가 table 1 M x O y 가 DUPIC : Sr, Zr, Y, La, Ce, Pr, Nd, Sm; - matrix : Mo, Ru, Rh, Pd, Te; : Ba, Zr, Nb, Mo, (Rb, Te); 2 DUPIC S E M 가 가 UO_2 가 degree of ionic misfit 가 UO_2 [7]. 가 가 가 [1,6]. 3 DUPIC EPMA 가

Figure 2. SEM image of a polished and etched surface of simulated DUPIC fuel showing metallic(brighet spot) and oxide(dark spot) precipitates

1	D	UPIC				
		MA	TPRO			UO_2
	376.	9kJ/mol				
UO_2	[8]			DU	PIC	
	659.0kJ/	m ol		MATPRO		
UO_2					•	
4	DUPIC	matrix			EPMA	
matrix	N d Zr	가				
	3 point 2	matrix	가	Sr		
	가	solid	solution	hardening	effect	
UO_2						

F.P	pt.	U	Zr	Мо	Ru	Pd	Sr	Rh	
metallic precipitates	1 3 4 5	38.26 23.97 12.70 26.88	1.24 0.88 1.88	34.14 27.92 42.08 31.98	19.42 41.56 32.57 30.13	1.24 1.59 2.10 2.28	2.38 1.30 2.94 1.74	2.18 2.83 1.71 2.05	T e : 1.13 Ba : 1.58 La : 1.15 Ce : 1.29 Ba : 1.36 La : 1.15 Ce : 1.29 T e : 0.47
matrix	2	98.33	0.69				0.55		Ce : 0.43

Figure 3. EPMA analysis result of simulated DUPIC fuel

Figure 4. EPMA analysis result of oxides dissolved in the matrix of simulated DUPIC fuel

DUPIC			6.34 M P a	
1973K, 1873K	, 1773K			
$1.24556 \times 10^{-5}, 9 \times 10^{-7}, 1.3$. MATPRO			
U O 2			, EPMA	
가				
DUPIC		659.0kJ/mol		
MATPRO	UO2	(376.9kJ/mol)		

		DUPIC	2	matrix		가
solid	solution	hardening e	ffect		UO_2	

•

References

- [1] M.S. Seltzer, A.H.Clauer and B.A. Wilcox, J. Nucl. Mat., 34 (1970) 351
- [2] P.E. Bohaboy, R.R. Asamato and A.E. Conti, GEAP-10054 (1969)
- [3] B. Burton and G.L. Reynolds, Acta Met., 21 (1973) 1641
- [4] R.A. Wolfe and S.F. Kaufman, *WAPD-TM-587* (1967)
- [5] S.H. Na et al., '98 Proc. of Kor. Nucl. Soci. Spring meeting, (1998) 181
- [6] D.T. Hagrman et al., SCDAP/RELAP5/MOD3.1 Code Manual Vol.IV: MATPRO, NUREG/CR-6150, (Nov. 1993)
- [7] W.M. Armstrong and W.R. Irvine, J. Nucl. Mat., 12 (1964) 261
- [8] M.S. Seltzer, A.J. Markworm, A.H. Clauer, B.A. Wilcox and J.S. Perrin, BMI-1912 (1971)

IV.

L